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Abstract: Counts of uniquely identified individuals in a population offer opportunities to estimate abundance. 
However, for various reasons such counts may be burdened by heterogeneity in the probability of being detected. 
Theoretical arguments and empirical evidence demonstrate that the negative binomial distribution (NBD) is a use- 
ful characterization for counts from biological populations with heterogeneity. We propose a method that focus- 
es on estimating multiple populations by simultaneously using a suite of models derived from the NBD. We used 
this approach to estimate the number of female grizzly bears (Ursus arctos) with cubs-of-the-year in the Yellowstone 
ecosystem, for each year, 1986-1998. Akaike's Information Criteria (AIC) indicated that a negative binomial model 
with a constant level of heterogeneity across all years was best for characterizing the sighting frequencies of female 
grizzly bears. A lack-of-fit test indicated the model adequately described the collected data. Bootstrap techniques 
were used to estimate standard errors and 95% confidence intervals. We provide a Monte Carlo technique, which 
confirms that the Yellowstone ecosystem grizzly bear population increased during the period 1986-1998. 
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Estimating population size continues to be a 
problem that challenges ecological studies. 
Many animals are cryptic or elusive, and thus 
require indirect means of enumeration. New 
techniques using DNA microsatellites offer excit- 
ing promise for population estimation because 
individuals can be identified from hair, blood, 
feces, or tissue samples (Paetkau and Strobeck 
1994, Palsb0ll et al. 1997, Mills et al. 2000). 
Other methods for identifying individuals in- 
clude horn and ear shape and scars in the great 
Indian one-horned rhinoceros (Rhinoceros unicor- 
nis; Laurie 1978); coloration patterns in the fur 
of lions (Panthera leo; Bertram 1978), African 
wild dogs (Lycaon pictus; Frame et al. 1979), and 
cheetahs (Acinonyx jubatus; Caro and Durant 
1991); variation in pigment and scars in the dor- 
sal fins and backs of killer whales (Orcinus orca; 
Bigg 1982, Hammond et al. 1990); and geo- 
graphically separated female grizzly bears with a 
variable number of cubs-of-the-year (Knight et al. 
1995). Still, identifying each individual in a pop- 
ulation typically requires an extraordinary sam- 
pling effort. 

1 E-mail: boyce@ualberta.ca 

We focus on situations where sightings of indi- 
viduals can occur at any time during data collec- 
tion rather than at discrete trapping occasions 
and where several population sizes are to be esti- 
mated (e.g., the size of a population during each 
year for several years). A method is available to 
estimate a single population size from sightings 
of unique individuals (Craig 1953, Lewontin and 
Prout 1956, Darroch 1958, Boyce et al. 2001). 
However, this model assumes that all individuals 
are equally likely to be counted, and thus it does 
not allow for heterogeneity in the probability of 
detection among animals, which is a major con- 
sideration in many studies (Eberhardt 1969). 
Other methods for estimation are also available 
that do allow for heterogeneity (Burnham and 
Overton 1978, Otis et al. 1978, Chao 1987, Chao 
and Lee 1992, Pledger 2000), but again they were 
developed for discrete sampling occasions and 
only for estimating 1 population size at a time. 

When heterogeneity exists in the sighting prob- 
abilities, it is reasonable to consider the negative 
binomial distribution (NBD) as a model for the 
counts of the number of sightings of individual 
animals. A justification for using NBD comes 
from the fact that if the number of sightings per 
animal has a Poisson distribution and the mean 
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of the Poisson distribution for each animal is a 
random value from a gamma distribution, then 
the resulting distribution for the frequency of 
sightings will be a NBD (Kendall and Stuart 
1969). The Poisson assumption is reasonable if 
the probability of a sighting during any small 
time interval is small and the numbers of sight- 
ings in any 2 disjoint time intervals are indepen- 
dent, while the gamma distribution is a very flex- 
ible unimodal distribution that enables the values 
of the Poisson means to be either very skewed, 
symmetric, or constant. These assumptions seem 
plausible and reasonable for many sampling situ- 
ations. Furthermore, the NBD often is an ade- 
quate description of the statistical distribution for 
heterogeneous (aggregated) ecological data 
(Tanton 1965, Wilbur and Landwehr 1974, Hil- 
born and Mangel 1997, Krebs 1999, Southwood 
and Henderson 2000). 

Applying the NBD to single populations has 
been shown to result in unreasonable estimates 
(Wilbur and Landwehr 1974, Seber 1982:496). 
However, the situation is different if the estima- 
tion of several population sizes is considered at 
the same time because then it is possible for the 
estimation of 1 population size to be aided by 
data that were primarily collected for the estima- 
tion of the other population sizes. 

We assume that the aim of an analysis is to esti- 
mate the size of several closed populations simul- 
taneously. We propose a suite of 6 models from 
the NBD family for this purpose, some of which 
allow for heterogeneity, and use the Akaike Infor- 
mation Criteria (AIC) as an objective basis to 
select 1 of these models. We use bootstrap meth- 
ods for estimating standard errors and construct- 
ing confidence intervals; simulation is used to 
evaluate the properties of these procedures. We 
envisage that these methods might be appropri- 
ate where distinct populations or age-sex groups 
have been sampled in different years or at differ- 
ent locations. 

We offer an example estimating population 
sizes of female grizzly bears with cubs-of-the-year 
from 1986 to 1998 using the sighting frequencies 
of unique family groups (Knight et al. 1995) and 
propose a Monte Carlo test for detecting trend in 
population size. Observations of female grizzly 
bears with cubs-of-the-year are compiled during 
each field season in the Yellowstone ecosystem 
with unique individuals identified by the number 
of cubs, geographic location, and characteristics 
of family groups. However, variation in weather 
conditions for conducting surveys, funding for 

flight time, and availability of field personnel cre- 
ate variation in search effort (Mattson 1997). 
Furthermore, variation occurs from year to year 
in the detectability of bears because bears are 
more active during years when food is scarce, and 
therefore they are more likely to be detected 
(Picton et al. 1986, Noyce and Garshelis 1997). 
We suggest models that accommodate these 
among-year influences on counts. These sources 
of heterogeneity plus potential heterogeneity in 
sighting probabilities due to variation in the rela- 
tive accessibility of individual animal's home 
ranges (Wilbur and Landwehr 1974, Otis et al. 
1978) and the opportunistic nature of the sam- 
pling justify our application of the NBD for esti- 
mating the population size of grizzly bears. 

METHODS 

Grizzly Bear Counts 
We compiled observations of adult female grizzly 

bears with cubs-of-the-year according to field pro- 
tocols described by Knight et al. (1995). Identifi- 
cation of unique family groups was based on 3 cri- 
teria: distance between sightings, timing of 
sightings, and physical characteristics of individuals 
in each group. Unique family groups were identi- 
fiable by the size and number of cubs in the litter, 
as well as geographic and temporal separation. 

Field surveys were conducted by selected per- 
sonnel who were well trained in the identification 
of bears. Observations of family groups from both 
ground and aerial surveys were compiled through- 
out each field season, with most observations 
being recorded during May through September. 
Multiple observations of the same bear by differ- 
ent observers on the same day were counted as a 
single observation. This rule was developed to 
reduce the high frequency of sightings that 
might occur when a bear was located in an acces- 
sible area, such as near a road, where multiple 
observers might see the same bear. When multi- 
ple observations were made of a bear at the same 
location by the same observer, we used only the 
first observation. Thus, if a bear was revisited by 
the same observer at the same location, as might 
occur if a bear was feeding on an ungulate car- 
cass, we recorded only the first observation at that 
location. Again, this recording rule was developed 
to reduce heterogeneity in sighting frequency. 

In addition to accumulating ground-based ob- 
servations of female grizzly bears with cubs-of-the- 
year throughout the entire season, these counts 
were supplemented by aerial surveys. Aerial 
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surveys were coordinated to minimize double- 
counting caused by movement of bears between 
areas surveyed by different observers. All bear 
management units in the Yellowstone ecosystem 
were surveyed during each field season with no 
overlap between field survey areas. Areas not cov- 
ered by the Wyoming Game and Fish Depart- 
ment or National Park Service personnel were 
surveyed by the Interagency Grizzly Bear Study 
Team (IGBST). When weather conditions and 
funds permitted, as many as 3 flights over each of 
18 bear management units were flown June 
through August each year. 

Occasionally, 2 sightings of females with the same 
number of cubs in the same year might have adja- 
cent home ranges within 30 km. Whenever there 
was a question regarding the uniqueness of these 
individuals, they were not considered distinct 
bears. Unique identification was not possible un- 
less they were sighted at approximately the same 
time on the same day (Knight et al. 1995). These 
sightings were assigned to the most proximal bear 
and considered a duplicate sighting. Such errors 
were more likely in areas of high bear density 
where infrequent observations occurred making 
estimates conservative. In much of Yellowstone 
National Park, uniqueness was more accurately 
determined by high frequency of observations. 

Statistical Background for the Abundance 
Estimator 

Assuming that the number of sightings of an 
individual comes from a Poisson distribution 
allows sightings to occur at any time during data 
collection and does not require a discrete number 
of trapping occasions as in many mark-recapture 
studies. In such studies, the number of sightings 
per animal would follow a binomial distribution; 
however, the Poisson distribution could be used as 
an approximation if the number of trapping occa- 
sions is large, with a small probability of a sighting 
occurring within each trapping period. 

The properties of the NBD are well known and 
a variety of formulations exist for the probability 
function. We follow Kotz et al. (1988) in using 

Pr(X= x) = F(k + x)PX(1 + p)-(k+ x) 

r(k) x! 

for x = 0, 1, 2,.. . where k, P> 0 with mean kPand 
variance kP( 1 + P), where k and P are the shape 
and scale parameters of the gamma distribution 
for the Poisson means, and X is the number of 
times an animal is sighted. We refer to this dis- 

tribution with the notation NBD(k, P). The level 
of heterogeneity can be measured by the coeffi- 
cient of variation (CV) for the Poisson means, 
which is 1/(k). The Poisson distribution is the 
limiting form of the NBD when k tends to infini- 
ty and P tends to zero, as the CV tends to zero 
while the mean and variance tend to equality. 
Thus, this represents the case where there is no 
heterogeneity. The probability function of the 
Poisson distribution with mean X is 

Pr(X= x) = e-Kxx/x! (2) 

for x = 0, 1, 2, . . ., where k >0. We use the nota- 
tion Po(X) to refer to this distribution. 

We consider using these distributions truncated 
at zero to allow for the fact that the number of ani- 
mals not seen is unknown. These have the form 

Pr(X= x) 
Pr(X= x)*= 1 - Pr(X= 0) 

for x= 1, 2, . . ., where Pr(X= 0) = (1 + P)-k and 
e-~ for the truncated negative binomial distribu- 
tion (TNBD) and truncated Poisson distribution 
(TPD), respectively. 

An intuitive moment estimator Nof the popula- 
tion size can be obtained from the expected rela- 
tionship N[1 - Pr(X= 0) ] = n, where n is the num- 
ber of unique animals seen. Thus, the estimator 

n 
N = 

I -Po 
(4) 

where P0 is the estimate of Pr(X = 0) using the 
maximum likelihood estimates of the required 
parameters (Tanton 1965, Bunge and Fitzpatrick 
1993). 

Model Descriptions and Selection 
Because we wish to estimate abundance for 

multiple populations simultaneously, it is reason- 
able to postulate a number of models that are 
derived from the TPD and TNBD by constraining 
some parameters to be constant for all popula- 
tions. We focus our application to the example of 
13 years of grizzly bear data where the popula- 
tions of interest are the number of female bears 
with cubs-of-the-year. 

A variety of models can be fit to the data, rang- 
ing from 1 assuming no heterogeneity and the 
fraction of the population expected to be 
observed is constant, to 1 assuming different lev- 
els of heterogeneity and the expected observable 
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fraction of the population differs in each year. 
We fit 6 models to the data: 

Model 1.-No heterogeneity and a constant 
fraction of the populations expected to be 
observed in all years implying that counts come 
from the same Poisson distribution for all years. 
This has only 1 unknown: the Poisson mean. 

Model 2.-No heterogeneity and the fraction of 
the populations expected to be observed differs 
among years. This suggests a different Poisson 
distribution each year, Po(Xj). For the grizzly 
bear data there are 13 unknown parameters, 1 for 
each year. 

Model 3.-For all years, there is a constant level 
of heterogeneity and constant fraction of the 
populations expected to be observed. The sight- 
ing distribution every year is thus the same, and 
is equivalent to the NBD(k, P). There are 2 un- 
known parameters: k and P. 

Model 4.-For all years, there is a constant level 
of heterogeneity and the fraction of the popula- 
tions expected to be observed differs between 
years. The sighting distribution in year j is then 
NBD (k, Pj). There are 14 unknown parameters: 
k and P1 to P13. 

Model 5.-The level of heterogeneity differs 
among years, and the relative difference in het- 
erogeneity between years determines the relative 
fraction of the populations expected to be ob- 
served. The sighting distribution is then NBD(kj, P) 
for year j. There are 14 unknown parameters: P 
and k1 to k13. 

Model 6.-The level of heterogeneity differs 
among years, as does the expected fraction of the 
population that is observed. The sighting distri- 
bution is then NBD(kj, Pj) for year j. There are 
26 unknown parameters: k1 to k13 and P1 to P13. 

Although models 1, 3, and 5 do not seem bio- 
logically realistic with respect to the Yellowstone 
grizzly bear data, they should not be rejected 
without suitable consideration. If there is little 
variation in the fraction observed, then the sim- 
pler model may have advantages over the more 
complex models by requiring the estimation of 
fewer parameters. 

We use the approach of selecting 1 model from 
a range of possible alternative models (Hilborn 
and Mangel 1997, Burnham and Anderson 1998). 
A best model then can be chosen by selecting the 
model with the smallest AIC value (2. [number of 
parameters - log likelihood]; Akaike 1973). An 
alternative approach would be to use model aver- 
aging (Burnham and Anderson 1998), but this 
method is not explored here. 

We stress that a model is only an approximation 
of ecological reality, and the purpose of AIC is to 
choose a model that captures notable features of 
the sample data with as few parameters as possi- 
ble (Burnham and Anderson 1998). A selected 
model is not necessarily the true or correct 
model that generates the observed data. 

Simulation Study 1 
A simulation study was undertaken to deter- 

mine the effectiveness of the AIC procedure for 
model selection. We investigated the effect of the 
following conditions: Population size (N) was 
made constant for all years and set at 3 levels with 
(i) N= 20, (ii) N= 30, and (iii) N= 40. Likewise, 
the level of heterogeneity was made constant for 
all years with (i) CV = 0.0, (ii) CV = 0.3, (iii) CV = 
0.6, (iv) CV = 0.9, or alternatively (v) each year 
the CV was randomly chosen from a uniform dis- 
tribution between 0.1 and 0.9. These situations 
led to data being generated from Model 2 when 
the CV = 0, Model 4, when the CV = 0.3, 0.6 or 0.9, 
and Model 6 when the CV was varied randomly. 
These factor values seem reasonable given the 
results of the analysis on the grizzly bear data. 
For direct comparability with the 1986-1998 griz- 
zly bear data, 13 years of simulated data were gen- 
erated from NBDs such that the expected total 
number of sightings during each year was equal 
to that observed (i.e., parameters for the simulat- 
ed NBD in year jwere: kj = 1/CV2 and P = S./N, 
where Sj is the observed total number of sightings 
in year j). 

For each of the 15 factor combinations, 13 years 
of data were generated by drawing Nobservations 
from the NBD(kj, P.) for year j. The 6 models 
were then fit to the data using maximum likeli- 
hood, and the estimated population size was 
recorded for each model. One model was chosen 
on the basis of AIC, and the results recorded sep- 
arately. This procedure was repeated 5,000 times. 

To find the maximum likelihood estimates of 
the parameters, a downhill simplex method was 
used to find the minimum of the negative log- 
likelihood (Press et al. 1992:408-412). Occasion- 
ally, this did not converge to finite estimates and 
in these situations the models that did not con- 
verge were not considered for selection on the 
basis of AIC. Because k, P, and X must be greater 
than zero, the downhill simplex method was 
implemented using the natural logarithm of 
these parameters. Also, because the distribution 
of population estimates is skewed to the right, the 
average and root mean square error (RMSE) 
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were calculated on the natural logarithm of the 
estimates for each model. The model selected on 
the basis of AIC and the number of times conver- 
gence was not achieved were also recorded. 

Lack-of-Fit 
For the Yellowstone grizzly bear data, we calculat- 

ed the Pearson X2 statistic to measure the lack-of-fit 
of the AIC-selected model to the observed data. 
This was done in the usual manner by comparing 
the observed frequency of bears seen Xtimes to the 
expected frequency from the AIC-selected model. 
Cells with expected frequencies < 2 were pooled, 
starting with cells corresponding to the higher X 
values. The degrees of freedom (df) were calcu- 
lated as the number of cells used, minus the num- 
ber of parameters in the model, minus the number 
of populations being modeled. The Pearson X2 
statistic was then compared to the X2 distribution 
with appropriate df to determine the lack-of-fit. 

Bootstrap Standard Errors and Confidence 
Interval 

Bootstrap techniques were used to estimate the 
standard error and for constructing 95% confi- 
dence intervals on the estimated number of 
unseen individuals (Manly 1997). A semi-para- 
metric bootstrap approach was used where the 
"population" from which the bootstrap samples 
were drawn for year j consisted of the sightings 
for the observed nj individuals, plus the estimat- 
ed number of individuals with zero sightings 
(U.), rounded up to the nearest integer (UJ*). 
N*. (= U* + nj) individuals were then randomly 
resampled, with replacement, from the "popula- 
tion" to create a bootstrap sample of n'. individu- 
als with non-zero sightings. Using this bootstrap 
method, the number of sightings and observed indi- 
viduals will vary with each bootstrap sample. The 
only constraint used in the bootstrap process was 
that there must be at least 1 resighting. This restric- 
tion was necessary to prevent some estimators 
from tending to infinity and seems reasonable here 
because the minimum number of bears resighted >1 
time in any year was 8 for the real grizzly bear data. 

The first 4 models were fit to the 13 bootstrap 
samples and the best model selected on the basis 
of AIC. The estimated number of unseen individ- 
uals from the bootstrap data was recorded. This 
was repeated 1,000 times so that the expected 
value and standard error of the bootstrapped esti- 
mates of U* could be calculated. The standard 
error of the bootstrap estimates can be used as an 
approximation of the standard error for U/ and Nj 

(Manly 1997). Because the distribution of popu- 
lation size estimates was skewed to the right, we 
assumed the estimates had a log-normal distribu- 
tion. Models 5 and 6 were not fitted in this pro- 
cedure because the simulation study on AIC 
model selection showed that these models often 
yielded population-size estimates that are unreal- 
istically high and generally have poor properties. 

Consider the following example of this semi- 
parametric bootstrap method. Suppose in 1 year 
15 individuals were observed (n), of which 8 were 
sighted once, 5 were sighted twice, 1 sighted 4 
times, and 1 sighted 8 times. From the AIC- 
selected model, the population was estimated to 
be 22.3 in which case N*= 23 and U* = 8. A boot- 
strap resample of size 23 is then taken from the 
population of 23 (= 8 + 15) animals, which result- 
ed in 10 individuals being drawn that were not 
sighted, 9 that were sighted once, 3 sighted twice, 
and 1 sighted 8 times. This gives a total of 13 ani- 
mals with at least 1 sighting (n') and would be 
used as the bootstrap sample to which the AIC 
selection procedure is applied. 

This semi-parametric bootstrapping approach 
is justified based on the following grounds. Boot- 
strapping generally is used to avoid distributional 
assumptions about the data collected, hence the 

resampling of the observed data. However, a 
standard error should reflect the variability in the 
abundance estimates obtained by repeating the 
study and collecting alternative sets of sighting 
data from the entire population. Therefore, we 
need to estimate the number of individuals that 
were not encountered. There is also uncertainty 
in the AIC-selected model, because a different set 
of data collected from the same population may 
result in a different model being selected. This 
also needs to be reflected by the standard error. 

Assuming ln(UL) has a normal distribution, a 
95% confidence limit for In (Uj) is In (Uj) ? 1.96 * 

'rln(Uj). This leads to a lower limit for Nj of 

(5) nj + exp[ln(j))-1.96 
* 

(^ln(Uj)] 

and an upper limit of 

nj + exp[ln (U) + 1.96 * ln(t)] (6) 

where the standard error of In (Uj), c is esti- 
mated by bootstrap resampling. Using the log- 
normal properties of ln ( Uj) the standard error for 
Uj and Nj will be 

exp (2 * ln( Uj) +(Tln j)) 
* [exp (ln( u)I)- 1] (7) 

J. Wildl. Manage. 65(3):2001 



NEGATIVE BINOMIAL MODELS * Boyce et al. 503 

Simulation Study 2 
A simulation study was used to assess the boot- 

strap estimates of standard errors and 95% confi- 
dence intervals. Here, population size and level 
of heterogeneity were fixed for all years and set at 
2 levels each with (i) N= 30 or (ii) N= 40, and (i) 
CV = 0.6 or (ii) CV = 0.9. Once again, the expect- 
ed number of sightings for each of the 13 years 
was set equal to that observed. For the 4 factor 
combinations, 100 sets of data were generated, 
and the above bootstrap method was applied with 
1,000 bootstrap samples drawn for each year. For 
the real data we obtained 5,000 bootstrap samples. 

Trend Assessment 
When estimates of population size are made 

over several years, managers often want to know 
whether there is a trend in abundance estimates 
over time. Monte Carlo simulations can be used 
to determine the significance of an apparent 
trend. Using the model selected by AIC, simulat- 
ed sets of data were generated such that the 
expected number of sightings was the same as 
that observed, with the population size fixed and 
constant for all years. For each set of generated 
data, the AIC procedure was then used to select 1 
of the first 4 models described earlier. The Spear- 
man-rank correlation coefficient (r) was calculat- 
ed to measure the degree of correlation between 
the AIC abundance estimates and year. Thus, 
each simulated set of data gave a rank correlation 
(r'). The significance of the observed r was deter- 
mined by the proportion of the 5,000 simulations 
that provided an absolute value of r' greater than 
or equal to the absolute value of the observed r. 
The simulations were performed with population 
size and level of heterogeneity fixed at 3 levels 
each (3 x 3 = 9 combinations) to investigate the 
sensitivity of the test to changes in these 2 factors. 
Also, N and CV were set at levels near the esti- 
mates of the original AIC-selected model. 

Simulation Study 3 
Simulations also were performed to explore the 

power of this test to detect a linear annual 
change in population size. For the grizzly bear 
example, population size was changed over time, 
either increasing at a rate of 2 bears per year or 
decreasing by 2 bears per year. Heterogeneity 
was set at 3 levels to examine the sensitivity of the 
test's power. From the above Monte Carlo simu- 
lations with constant population size, the critical 
values for the (x = 5% level were determined. 
These were compared to the absolute values of r' 

obtained from the 5,000 simulations with a trend 
in population size. Power was defined to be the 
proportion of the 5,000 simulations with the 
absolute value of r' greater than the critical value. 

Software to perform the AIC model selection, 
bootstrap, and Monte Carlo procedures may be 
obtained from the senior author. 

RESULTS 

Simulation Study on Model Selection 
Non-convergence of the likelihood function was 

a major problem only when Model 6, NBD (k , Pj), 
was fit to any of the simulated data sets, but par- 
ticularly to those that were generated with little or 
no heterogeneity (Table 1). Results not present- 
ed here suggest that a reasonable explanation for 
this is the TNBD is tending to the TPD for 1 or 
more populations, hence the TNBD is an inap- 
propriate model for that population. All other 
models converged for all simulated sets of data. 

When data were generated from Model 2 (CV = 
0), AIC most often (>68.1%) selected the correct 
model and selected Model 4 incorrectly <27.5% 
of the time. Model 4 was correctly selected in 
most (>65.3%) of the simulations when CV was 
fixed at 0.6 or 0.9, but Model 2 was incorrectly 
selected most often (>52.8%) when CV = 0.3. 
Model 6 was rarely correctly identified as the true 
model when the level of heterogeneity varied 
randomly among years; instead, Model 4 was usu- 
ally identified as the best (Table 2). 

We also found a shift in which model was select- 
ed as population size increased. For larger values 
of N, and as the data become more sparse (fewer 
sightings per individual), the simpler, more 
restrictive models were selected on the basis of 
AIC, particularly with no, little, or random het- 
erogeneity. 

Table 1. Percentage of simulations for which the log-likelihood 
of Model 6, where both heterogeneity and sightability vary 
among years, did not converge. Results from simulation stud- 
ies for n = 20 and n = 40 are presented here. The same con- 
clusions can be made from the results for n = 30. 

CV n = 20 n = 40 

0.0 14.3% 13.3% 
0.3 5.0% 7.2% 
0.6 0.1% 1.2% 
0.9 0.0% 0.1% 
Random 0.8% 2.9% 
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Table 2. Percentage of simulations for which model was selected on the basis of AIC. Entries in italics indicate where the true 
models have been correctly selected while values in bold text identify the model that was chosen most often. Results from the 
simulation studies for n = 20 and n = 40 are presented here. The same conclusions can be made from the results for n = 30. 

Selected model 
True model 1 2 3 4 5 6 

CV = 0.0 n = 20 0.0% 68.1% 0.0% 27.5% 3.3% 1.0% 
n = 40 0.1% 95.5% 0.0% 3.9% 0.2% 0.3% 

CV = 0.3 n = 20 0.0% 52.8% 0.1% 37.5% 8.9% 0.7% 
n = 40 0.2% 75.9% 0.3% 22.1% 1.4% 0.1% 

CV = 0.6 n = 20 0.0% 3.2% 2.2% 77.2% 17.4% 0.1% 
n = 40 0.0% 8.8% 2.2% 75.0% 13.9% 0.0% 

CV = 0.9 n = 20 0.0% 0.0% 16.7% 65.3% 18.0% 0.0% 
n= 40 0.0% 0.1% 9.8% 73.0% 17.1% 0.0% 

CV is random n = 20 0.0% 14.3% 1.1% 67.9% 15.8% 0.9% 
n = 40 0.0% 22.2% 1.5% 68.7% 7.5% 0.1% 

Estimates of abundance from Models 5 and 6 
were highly unstable with undesirable properties 
for years with a small number of sightings (<50), 
even when selected as the best model by the AIC 
criterion. This suggests that Models 5 and 6 are 
unsuitable and should not be considered in situa- 
tions where the numbers of sightings are similar to 
those we observed. Estimates from these models 
have been removed from all subsequent results. 

Figs. 1-3 show the back-transformed values of the 

average In-transformed estimates of population 
size. In all situations, the AIC-selected model com- 

pared favorably to the true model, and often the 
AIC model was less biased. The results of Model 2 
have been presented in Figs. 2 and 3 to illustrate the 
effect of assuming no heterogeneity when hetero- 
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geneity is present. For all models, the bias decreas- 
es as the number of sightings increases and the 
AIC model appears to be approximately unbiased, 
on the natural logarithm scale, for >30 sightings. 

The residual mean square error (RMSE) of the 
AIC-selected model is similar to that of the true 
model for all fixed levels of heterogeneity (Figs. 4 
and 5) and approximately equal to that of Model 
2 when the level of heterogeneity varies randomly 
(Fig. 6). As would be expected, the RMSE is small- 
er for years with a greater number of sightings. 

Bootstrap Standard Errors and Confidence 
Intervals 

Simulations suggest that coverage of the 95% 
confidence intervals for abundance estimates are 
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Fig. 1. Expected population size estimates for 13 years of data 
with expected number of sightings the same as those ob- 
served and CV = 0. 
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Fig. 2. Expected population size estimates for 13 years of data 
with expected number of sightings the same as those ob- 
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slightly low at approximately 90%, with the true 
population level being outside the confidence 
intervals on too many occasions (Table 3). 
Results not presented here indicate the bootstrap 
standard errors are in reasonable agreement with 
the true standard errors for the estimates of 
abundance, with a tendency to be slightly high. 

Yellowstone Grizzly Bear Example 
The sighting frequencies of female grizzly bears 

with cubs-of-the-year in the Yellowstone ecosys- 
tem from 1986-1998, as used for our analysis, is 
reproduced in Table 4. These differ from the 
data used by earlier authors (Knight et al. 1995, 
Boyce et al. 2001) due to recently identified dis- 

crepancies. Applying the AIC criteria, Model 4 
was selected (Table 5), which appears to be a rea- 
sonable fit of the observed data (X2 = 23.03, df = 
21, p = 0.170). The AIC weights (Burnham and 
Anderson 1998) provide further overwhelming 
evidence that Model 4 is the best of the models 
considered. Estimates of model parameters, pop- 
ulation size, standard errors and 95% boot- 
strapped confidence intervals for abundance are 
presented in Table 6. Abundance estimates ap- 
pear reasonable with an apparent upward trend. 
The estimate of k implies a CV for the Poisson 
mean of 0.74. 

These results suggest the population size be 
fixed at 25, 35, and 45 using our Monte Carlo sim- 
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Fig. 3. Expected population size estimates for 13 years of data 
with expected number of sightings the same as those ob- 
served and random CV. 

Fig. 4. RMSE of population size estimates for 13 years of data 
with expected number of sightings the same as those ob- 
served and CV = 0. 
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Table 3. Coverage of the semi-parametric bootstrap 95% con- 
fidence intervals as determined from 1,300 simulated confi- 
dence intervals. In theory, limits should be too extreme on less 
than 2.5% of occasions. 

Lower limit Upper limit 
True model too high too low 

CV=0.6 n= 30 6.5% 4.9% 
n = 40 4.5% 4.8% 

CV = 0.9 n= 30 6.4% 3.9% 
n = 40 4.6% 2.2% 

ulation test for trend, with a CV of 0.55, 0.75, and 
0.95. The observed value of the Spearman-rank 
correlation coefficient is 0.868 for which we ob- 
tain P-values of <0.001 in all 9 sets of simulations. 
This indicates very strong evidence of an increas- 
ing population. The average critical value at the 
a = 5% level from these simulations is 0.515, which 
gives power estimates between 80-90% for both 
increasing and decreasing trends. 

DISCUSSION 
A variety of other methods are available for esti- 

mating abundance of heterogeneous populations 
including those of Burnham and Overton (1978), 
Chao (1987), and Chao and Lee (1992). However, 
as noted previously these methods are appropri- 
ate for situations where sightings occur at dis- 
crete occasions unlike the situation we are con- 
sidering here. One could make data of sightings 
in continuous time discrete by considering 
whether an individual was sighted at least once 

within a relatively large time period (i.e., sighted at 
least once within a month), and then make com- 
parison of abundance estimates with these other 
methods. A comparison of our proposed method 
with existing alternatives would be of value. 

We acknowledge that our simulations do not 
address situations where the type of heterogeneity 
present in the Poisson means has a form that can- 
not be described by the gamma distribution, such 
as a bimodal distribution. However, we also note 
that the approach to estimation suggested here 
easily can be used with other distributions for the 
count data. The robustness of the negative bino- 
mial model and possible alternative models is an 
area that deserves to be explored in the future. 

Our simulation results show that Models 5 and 6 
provide highly unstable estimates of population 
size in data sets similar to the Yellowstone grizzly 
bear data. This may be due to the poor estimation 
of the heterogeneity parameter k from only 1 year 
of information. The estimates from Model 5 ap- 
peared to stabilize with greater than 60 sightings 
and that may indicate a minimum number of sight- 
ings required for this model to be used in practice. 
However, the estimates from Model 6 still had not 
stabilized with 80 sightings. This is similar to the 
findings of Wilbur and Landwehr (1974) who 
reported that the TNBD provided unrealistic esti- 
mates of the number of unseen animals in a single 
population, even when the TNBD was an ade- 
quate description of the observed frequencies. 

On the basis of these findings and our other 
results, it appears that when analyzing multiple 
closed populations with potential sighting het- 
erogeneity, using AIC to select 1 of the first 4 

Table 4. Number of female grizzly bears with cubs of the year sighted X times, from 1986-1998. Total number of sightings is 

m>, while nj is the number of unique individuals. 

Year 
X 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 

1 7 7 7 7 7 11 15 8 9 13 15 13 11 
2 5 3 4 5 6 3 5 8 7 2 10 7 13 
3 6 1 4 7 3 1 2 2 1 2 4 5 
4 1 1 1 1 1 3 1 1 1 1 
5 1 1 1 1 1 3 1 
6 2 
7 1 11 1 2 
8 2 

15 1 

mj 82 20 36 28 49 62 37 30 29 25 45 65 75 

nj 24 12 17 14 22 24 23 18 18 17 28 29 33 
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Table 5. Number of parameters, differences in AIC values rel- 
ative to Model 4 (constant heterogeneity but with sightability 
varying among years), and AIC weights for models fitted to the 
Yellowstone grizzly bear data, 1986-1998. 

Number of AIC 
Model parameters AAIC weight 

4 14 0.0 99.99% 
3 2 9.0 0.01% 
2 13 29.0 0.00% 
1 1 60.0 0.00% 

models that we described seems to be a valid ap- 
proach to obtain reasonable estimates of popula- 
tion size if the selected model provides an ade- 
quate fit of the observed data. Again, we stress 
that the purpose of using AIC is not to identify 
the correct model that may be generating the 
data, but to select 1 model from a range of alter- 
natives that is adequate in describing the collect- 
ed data with as few parameters as possible. 

Using bootstrap resampling to obtain estimates 
of the standard errors seems appropriate in this 
situation. Other, fully parametric approaches could 
have been used, but that would require the 
assumption that a particular model was true. By 

Table 6. Estimates of the number of female grizzly bears with 
cubs of the year (Nj), standard error (SE), along with lower and 
upper limits of the 95% confidence intervals for 1986-1998. 
Maximum likelihood estimates of Pj from Model 4 (constant 
heterogeneity but with sightability varying among years) are 
also included where k = 1.817. 

95% confidence intervals 

Nj SE Lower Upper Pj 

Year limit limit 

1986 29.4 3.4 26.0 38.9 1.535 
1987 24.5 10.4 15.7 54.1 0.449 
1988 26.8 5.5 20.9 41.8 0.740 
1989 23.2 7.5 16.8 44.4 0.666 
1990 33.4 5.4 27.0 47.9 0.808 
1991 33.2 5.8 27.4 49.2 1.025 
1992 49.3 16.4 32.6 94.9 0.413 
1993 36.6 8.4 26.5 58.7 0.451 
1994 38.5 10.2 26.8 65.7 0.414 
1995 42.8 27.5 23.3 122.7 0.322 
1996 60.0 14.0 42.9 96.7 0.413 
1997 43.8 7.6 35.2 64.2 0.818 
1998 49.4 7.5 40.4 69.1 0.836 

using a semi-parametric bootstrap approach, we 
assume that the AIC-selected model provides a 
good estimate of the number of unseen individu- 
als. By incorporating the real data via a bootstrap 
procedure we avoid assuming a parametric model 
for individuals with 1 or more sightings. One rea- 
son for the lack of coverage of our confidence 
intervals may be that the log-normality assumption 
of the UJ's is not strictly correct. Alternatively, as 
we estimate the standard error, a constant other 
than 1.96 might be required when calculating the 
upper and lower limits. This situation would be 
equivalent to constructing a 95% confidence 
interval on a sample mean when the population 
standard deviation is unknown, where the z-value 
of 1.96 should be replaced by the corresponding 
t-value with appropriate degrees of freedom. 

Monte Carlo simulations provide a method to 
determine the significance of an apparent trend 
by creating data sets with similar properties to 
that observed. Because the simulated sets of data 
have the same expected number of sightings for 
any given year, we have automatically allowed for 
bias in the population size estimates caused by a 
small number of sightings. Our results clearly 
suggest that despite any bias that may be present 
in our estimates, the number of female grizzly 
bears with cubs-of-the-year was increasing. 

MANAGEMENT IMPLICATIONS 
Several authors have used counts of females 

with cubs to estimate the number of grizzly bears 
in the Yellowstone ecosystem (Dennis et al. 1991, 
Foley 1994, Boyce et al. 2001). However, these 
counts clearly are underestimates of the number 
of females with cubs; the counts vary among years 
because of variation in sampling effort (Mattson 
1997, Boyce et al. 2001). The method that we 
propose removes the sampling-effort bias and will 
provide managers with better estimates of the 
true number of female grizzly bears with cubs 
and a statistically defensible method for detect- 
ing trends in the number of females. 

For the application of this method to grizzly 
bears, we note that our estimates are only for the 
total number of adult females with cubs-of-the- 
year. Based on this value, and independent esti- 
mates of the proportion of the population com- 
posed of adult females with cubs-of-the-year, 
estimates of total population size can be obtained 
(Eberhardt et al. 1986). Because much of the 
year-to-year variation in counts of females with 
cubs may be attributed to annual fluctuations in 
reproductive output, a 3-year moving sum of the 
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number of adult females with cubs-of-the-year 
will be a more reliable basis for estimation of total 
population size (Eberhardt and Knight 1996). 
The 3-year moving sum is used for management 
purposes and is justified because grizzly bears in 
the Yellowstone ecosystem typically give birth to 
cubs every third year (U.S. Fish and Wildlife Ser- 
vice 1993). Even though some females may breed 
early if cubs are lost, other bears have intervals 
longer than 3 years such that the average inter- 
birth interval in the Yellowstone ecosystem is 
close to 3 years (Eberhardt et al. 1994). 

We caution that use of abundance estimates for 
grizzly bear populations should not be consid- 
ered sufficient for monitoring trends, and we 
believe that continued monitoring of survival and 
reproduction of the bears is essential for this pur- 
pose (Eberhardt and Knight 1996). To extrapo- 
late abundance estimates of females with cubs of 
the year to estimate total population size, demo- 
graphic data are necessary to estimate the pro- 
portion of the population composed of females 
with cubs-of-the-year. Demographic details not 
only permit the estimation of trend to corrobo- 
rate estimates based on other methods but also 
provide details to help understand mechanisms 
behind changes in the population (Knight and 
Eberhardt 1984, Eberhardt et al. 1994). 
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