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Abstract 

Host population thresholds for invasion or persistence of infectious disease are core concepts of 

disease ecology, and underlie on-going and controversial disease control policies based on 

culling and vaccination.  Empirical evidence for these thresholds in wildlife populations has been 

sparse, however, though recent studies have narrowed this gap.  Here we review the theoretical 

bases for population thresholds for disease, revealing why they are difficult to measure and 

sometimes are not even expected, and identifying important facets of wildlife ecology left out of 

current theories.  We discuss strengths and weaknesses of selected empirical studies that have 

reported disease thresholds for wildlife, identify recurring obstacles, and discuss implications of 

our imperfect understanding of wildlife thresholds for disease control policy. 

 

Introduction 

Ideas about threshold levels of host abundance for invasion or persistence of infectious diseases 

are central to the theory and practice of disease ecology [1-3], but have their roots in human 

epidemiology.  The notion of a THRESHOLD POPULATION FOR INVASION (NT) is a founding 

principle of epidemiological theory [4-6], and the CRITICAL COMMUNITY SIZE (CCS) required for 

disease persistence dates back to Bartlett’s seminal analyses of measles data [7].  Evidence of 

population thresholds in wildlife disease systems has been described as “rare” [8] and “weak” 

[9], yet these concepts underpin all efforts to eradicate wildlife diseases by reducing numbers of 

susceptible hosts through controversial methods such as culling, sterilisation, or vaccination (e.g. 

[10-12]).  Recent empirical studies have sought to identify invasion and persistence thresholds in 

wildlife, with mixed success [8, 9, 12-15].  Here we consider these findings in the context of 

theoretical models of disease spread, which reveal that sharp population thresholds are not 
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expected for many disease-host systems. Moreover, even when thresholds are expected 

DEMOGRAPHIC STOCHASTICITY makes them difficult to measure under field conditions.  We 

discuss how conventional theories underlying population thresholds neglect many factors 

relevant to natural populations, such as seasonal births or compensatory reproduction, raising 

doubts about the general applicability of standard threshold concepts in wildlife disease systems.  

These findings call into question the wisdom of centering control policies on threshold targets, 

and open important avenues for future research.  

 

Setting the stage 

Numbers, densities, and transmission models 

Populations can be quantified in terms of numbers or densities of individuals.  The choice 

has implications for how standard models of disease transmission are interpreted, and proper 

usage and terminology are a topic under active debate among disease modellers [16-19].  For our 

general discussion of population thresholds, the critical issue is whether transmission rates 

increase with population abundance N—however it is measured—or remain constant (reflecting 

some behavioral limit to contact rates [2, 20]).  We will contrast two classical models of disease 

transmission, in which the hazard rate of infection for each susceptible individual scales linearly 

with the number or density of infectious individuals (yielding density-dependent transmission) or 

with the proportion of infectious individuals in the population (yielding frequency-dependent 

transmission).  In reality, many diseases are likely to exhibit density-dependent and frequency-

dependent transmission characteristics at low and high population sizes, respectively [2, 16, 19]. 
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Reproductive numbers and disease spread 

The BASIC REPRODUCTIVE NUMBER (R0) of a disease is the expected number of secondary 

cases caused by a typical infectious individual in a wholly susceptible population [4, 21, 22].  If 

R0<1, then each case does not replace itself on average and the disease will die out.  If R0>1, then 

the invasion can succeed.  When only a fraction s of the population is susceptible (e.g. if some 

hosts are immune due to previous infection or vaccination), disease spread is described by the 

EFFECTIVE REPRODUCTIVE NUMBER Reff = sR0.  Again Reff<1 implies the disease will decrease in 

prevalence and eventually die out.  The value of R0 (and Reff) depends on all factors influencing 

transmission, including the rate of contacts among hosts, mixing patterns, factors affecting 

infectiousness and susceptibility, and the length of the infectious period (Box 1) [4, 21, 22]. 

 

Population thresholds for disease invasion 

Deterministic foundations 

Invasion thresholds are conceptually straightforward: if R0 is an increasing function of N, 

as in density-dependent transmission, then the invasion threshold NT is that population size for 

which R0=1 (Box 1).  In DETERMINISTIC MODELS, populations with N >NT can sustain major 

disease invasions (R0>1), while those with N <NT cannot.  If R0 is independent of N, as in 

frequency-dependent transmission, then no threshold population size for invasion exists (though 

if some individuals are immune there can be a threshold proportion of susceptibles, sT=1/R0; this 

is the principle underlying HERD IMMUNITY [23]).  The simple epidemic models in Box 1 can be 

elaborated endlessly, potentially yielding N-dependence in R0 (and hence an invasion threshold 

NT) via any processes affected by competition for resources or complex social interactions. 
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Stochastic complications 

When the number of individuals carrying the disease is small, such as during the early 

phases of disease invasion or when total population size is small, chance events can play a 

significant role.  STOCHASTIC MODELS reveal that an invasion can fail by chance even when R0>1 

[22, 24].  Observing failed invasions therefore does not necessarily imply a population below the 

invasion threshold (Fig 1).  In the simplest models, where individuals leave the infectious state at 

a fixed per capita rate, the probability of a failed invasion when R0>1 is ( ) 0
01 IR , where I0 is the 

initial number of infected individuals [22].  Thus a disease with R0=3, introduced by a single 

infected case, has 33% chance of dying out.  In more realistic models incorporating non-random 

mixing or heterogeneous infectiousness, this complication is heightened because stochastic 

extinction can become much more likely for a given R0 [25, 26]. 

Random variation in outbreak size (i.e. the number of individuals infected) can blur the 

distinction between successful and failed invasions.  In relatively large populations or when 

R0>>1, the distribution of outbreak sizes is bimodal with distinct peaks corresponding to 

successful and failed invasions (Fig 1).  As population size decreases, or as R0 approaches 1, this 

clear distinction is lost and classifying any given outbreak as a success or failure becomes 

difficult.  Even if many outbreaks are observed it can be difficult to discern when the invasion 

threshold has been crossed—there is little difference between outbreak size distributions for 

R0=0.9 versus 1.1 (or even R0=1.5 in small populations).  One proposed solution to this problem 

is to define the threshold as the point where the distribution changes from monotonically 

decreasing to bimodal [27], but in practice it will be near-impossible to obtain enough replicate 

outbreaks to characterize borderline cases. 
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Stochastic fadeout and thresholds for disease persistence 

 After a disease has successfully invaded a population, it can still go extinct or “fade out” 

by chance.  ENDEMIC FADEOUT refers to extinction of a disease from a relatively stable endemic 

state, due to random fluctuations in the number of infected individuals (Fig 2a) [21].  EPIDEMIC 

FADEOUT describes extinction occurring after a major outbreak depletes the available pool of 

susceptibles, reducing the potential for on-going transmission until the number of susceptibles is 

replenished (Fig 2b) [21].  The notion of a critical community size (CCS), above which disease 

can persist, arose from studies of measles that suggested high probabilities of fadeout between 

biennial epidemics in communities smaller than about 250,000 people, but likely persistence in 

larger communities [7, 28].  Further study of measles has reinforced the CCS paradigm [21, 29-

31], encouraging researchers to look for persistence thresholds in other systems (Table 1)—but 

reviewing the basic theory shows that sharp thresholds should not be expected. 

Endemic fadeout is less likely when equilibrium abundance of infectious individuals (I*) 

is higher, and deterministic models show that I* increases with population size (Box 1).  

Stochastic models reveal that disease persistence in finite populations is inherently temporary 

because fluctuations always cause extinction over very long timescales [32].  Analysis of 

endemic fadeout therefore focuses on the expected time to extinction, TE, beginning from the 

QUASISTATIONARY DISTRIBUTION of I (i.e. the distribution of I conditional on non-extinction), 

which is approximately normal for diseases with R0>1 in large populations [32, 33].  The time to 

extinction from quasi-stationarity is distributed exponentially, with mean TE increasing 

nonlinearly with N (Fig 2c) [32-34].  Thus we expect longer persistence in larger populations—

with stochastic fadeout a very remote possibility for sufficiently large N—but no sharp threshold 

value of N that distinguishes populations where disease can or cannot persist.  Further, TE 
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depends strongly on the relative timescales of disease and demographic processes (Fig 2c), as 

summarised by the ratio ρ of mean host lifespan to mean infectious period (Box 1) [35].  For 

given values of R0 and N, faster demographic turnover (smaller ρ) favours longer disease 

persistence; ρ also affects the range of N for which TE becomes very large.  These timescale 

effects occur partly because I* increases as ρ decreases (Box 1), but the influence of relative 

timescales on fluctuations in I needs clarification. 

 Epidemic fadeout is more complicated than endemic fadeout, involving stochastic 

fluctuations in I superimposed on a changing epidemic curve (Fig 2b).  As a major epidemic 

declines, Reff drops below 1 due to depletion of susceptibles, and transmission will slow or stop.  

S grows back via birth, immigration, or loss of protective immunity, and if the disease can persist 

until Reff again exceeds 1 then another epidemic can result.  This cycle repeats, generating a 

series of periodic epidemics (with diminishing intensity in simple models, but see [21]) for as 

long as the disease persists.  Persistence through the “troughs” between epidemics depends on 

the duration of the waning tail of the initial outbreak, the number of individuals that escaped 

without infection, and the rate of replenishment of the susceptible pool.  The variable N interacts 

with these factors in complex ways—particularly in wildlife populations (Box 2)—but even the 

simplest models exhibit no sharp threshold in population size (Fig 2d).  Instead, epidemic 

fadeout depends fundamentally on timescales, because rapid demographic turnover (small ρ) 

speeds replenishment of S and aids persistence (Fig 2d) [22, 36], and on the intensity of the 

initial epidemic (governed by ρ and the infectiousness of the disease), because more individuals 

escaping infection leaves a greater pool of susceptibles [7, 24].  The detectable CCS for measles, 

with its short infectious period and extraordinary transmissibility, may be more the exception 

than the rule.  In general, fadeout rates are determined by relationships among N and the 
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timescales of demography and transmission [22, 33, 36], yielding gradual dependence on N but 

often no sharp threshold effects.   

 

Detecting thresholds in natural populations: observations and challenges 

Several recent studies have explicitly tested for population thresholds in wildlife disease 

systems (Table 1).  These studies represent major investments in field research and analysis, but 

their ability to draw definitive conclusions has often been limited by the inherent challenges 

described above and additional complexities of real disease-host interactions (Box 3).  Here we 

review their substantial contributions and identify recurring obstacles.   

The most obvious challenge is a low level of replication in wildlife studies compared 

with human datasets, which limits the ability of field workers to detect a threshold when one 

does exist (Fig. 1).  Combined with sampling error and stochastic extinctions, it also raises the 

possibility of spurious claims of thresholds.  A related limitation is that documentation of failed 

invasion or persistence is frequently lacking.  For rabies in red foxes Vulpes vulpes, a frequently-

cited dataset suggests a threshold in rabies prevalence associated with the number of foxes killed 

in a region (itself a controversial metric of relative density) [37]. However, because there were 

no observed densities (infected or not) below the putative threshold of 0.4 foxes killed/km2, the 

threshold’s validity is ambiguous.  Another oft-cited example of wildlife disease thresholds 

suggested that brucellosis could not invade or persist in bison Bison bison herds of less than 200 

individuals, but of the 18 herds studied only one herd had 200 bison (with seroprevalence near 

zero) and none were smaller than this [12].  In contrast, in the case of phocine distemper in 

harbour seals Phoca vitulina, analysis illustrates that if a CCS exists it is well above the 

estimated population size [14].  To demonstrate disease thresholds requires documenting not 
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only successful invasion or persistence at high host populations, but also failure of the disease to 

invade or persist in populations with N below the putative threshold.  Failed invasions by their 

nature are difficult to observe, compounding the difficulty of identifying these thresholds.  

The confounding effects of environmental reservoirs or multiple host species arise in 

several studies (Table 1).  An invasion threshold was suggested for both parvovirus and 

calicivirus in lions Panthera leo, based upon a susceptible pool assumed to equal the number of 

animals born between one outbreak and the next (thus neglecting immigration or animals that 

escaped previous infection) [15].  The authors acknowledge, though, that a critical determinant 

of outbreak timing—and thus of any threshold estimated from cumulative births—is introduction 

of the pathogen, so the patterns they observe could arise from disease dynamics within the 

unknown reservoir.  The spectre of unknown alternative host species looms over many wildlife 

disease studies, though some recent research has inferred the role of reservoirs from disease 

dynamics in their focal species [38, 39].  Definitive documentation of thresholds for a multi-host 

disease requires measuring the abundances of all important host species and their intra- and 

interspecific transmission rates (e.g. [40, 41]). 

 Even the most exhaustive studies demonstrating thresholds are beset by these 

fundamental problems.  Analysis of a 30-year time series convincingly showed a threshold 

density of great gerbils Rhombomys opimus below which plague (Yersinia pestis infection) was 

not present [9].  However, the authors could not distinguish between invasion and persistence 

thresholds, and the cause of an observed 2-year lag between gerbil abundance and plague 

outbreak is unclear.  On-going and extensive research of cowpox dynamics in a two-species 

rodent metapopulation [8, 41, 42] recently reported evidence of separate invasion and persistence 

thresholds for one host species, but only when abundances were measured in numbers, not as 
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densities [8].  While quite compelling, these data are confounded somewhat by inter-species 

transmission (including an unstudied third host species [41]) and by possible differences in 

movement and mixing between island and mainland populations. 

Finally, we note an independent line of relevant research: a number of recent studies 

demonstrate that disease transmission or prevalence increases with population size [43-45].  This 

indicates that R0 increases with N, a necessary but not sufficient condition for disease thresholds 

(Box 1). 

 

Thresholds in disease control: applications and evidence 

A longstanding approach to managing wildlife diseases is reduction of the susceptible 

population through culling, sterilisation or vaccination [3, 43, 46-53]. These control measures 

represent both the most important practical application of threshold concepts and the best 

potential source of large-scale experimental data testing those concepts.   

When links to theory are stated explicitly, most vaccination and population reduction 

targets seem to be aimed at reducing Reff below 1, rather than on the more ambiguous CCS [46, 

53, 54].  Seeking eradication through herd immunity by vaccinating a threshold proportion of the 

population is sound in principle, provided the population is well-mixed; otherwise targeted 

vaccination policies may be required, focusing on regions [48, 55] or pursuing thresholds 

calculated for specific groups [56].  Disease control by culling is theoretically more effective 

under some circumstances [46], but is less reliable due to its basic assumption that R0 increases 

with N (Box 1) and its vulnerability to unpredictable effects of population change, such as 

compensating reproduction (Box 2) or social perturbation [10].  Some wildlife control programs 

have achieved the ultimate success of regional eradication [47, 53], notably fox rabies in Europe 
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[52], while others have reduced disease incidence [52, 53] and a few have increased disease 

spread [10].  We believe an important lesson of our review is that population thresholds for 

disease are not sharp in natural systems—there are no “magic numbers”—so the often escalating 

cost of final, incremental steps toward a supposed threshold may not be justified.   

Control programs that manipulate the abundance of susceptibles hosts provide a unique 

source of information on the validity of population threshold concepts in wildlife disease.  

Unfortunately, studies of these programs suffer from the same methodological issues as the field 

studies described above.  Individual studies rarely include replication or a range of control effort 

and thus do not allow proper estimation of thresholds.  For example, a New Zealand trial 

eradicated bovine tuberculosis Mycobacterium bovis regionally by culling brushtail possum 

Trichosurus vulpecula densities to 22% of pre-control levels for 10 years [47].  This outcome is 

consistent with a model-predicted threshold at 40% of pre-control levels [54], but yields no 

further information regarding a precise threshold level.  Efforts to pool results from multiple 

control programs can be frustrated by inconsistent reporting practices, and by lack of 

comparability between different control methods.  For decades fox rabies control (by culling and 

more recently vaccination) has been extensive throughout Europe, but programs rarely give 

results from a range of fox densities and frequently do not report densities at all [52]; local 

eradications have been achieved, but programs failing to eradicate rabies (essential to 

determining thresholds) are probably under-reported. 

 

Conclusions and the way forward 

The concept of population thresholds for wildlife disease has potential to guide or 

mislead us, and should be applied with caution in research and control efforts.  The clearest 
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thresholds occur when the disease’s reproductive number increases with population size—these 

can apply to either invasion or persistence, but resist precise determination in ecological datasets 

due to stochastic effects and complex population structures.  For endemic or epidemic fadeout, 

no threshold exists in the sense of a sharp boundary between regimes.  Instead persistence 

increases gradually with population size, and can depend as strongly on timescales of 

demographic and transmission processes as it can on N.  Many questions remain regarding the 

influences of population and community ecology on threshold theory (Boxes 2, 3), and further 

investigation is badly needed. 

Empirical studies seeking disease thresholds in wildlife systems are challenged by the 

indistinct nature of their target, as well as by issues of sample size versus stochasticity and 

confounding ecological factors.  Future empirical research can follow two parallel paths.  Top-

down studies seeking to identify invasion or persistence thresholds for wildlife must address the 

recurring methodological issues listed above, compiling well-replicated disease datasets over a 

range of host abundances—and for persistence, also tracking mortality, recruitment and 

migration of hosts and identifying possible reservoirs.  These are lofty standards, and will be met 

only under rare circumstances.  Bottom-up mechanistic studies, meanwhile, can investigate the 

basic processes underlying thresholds (e.g. birth, death, immigration, and transmission), 

particularly the density dependence common in wildlife systems.  We believe that these 

complementary approaches, linked by new theory appropriate to wildlife disease, represent the 

surest path to well-grounded empirical evidence of disease thresholds. 

Our review emphasises that control policies predicated on reducing susceptible 

populations can reduce prevalence or eradicate disease, but perverse outcomes are possible and 

“magic number” thresholds, while alluring to policy-makers, are not supported by evidence.  
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Regardless of outcome, all control programs should monitor and publish their results, because 

they represent a critical opportunity to better our understanding of population thresholds and 

density dependence of wildlife disease. 
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Box 1.  Insights from simple deterministic models 

Basic principles of disease spread are illustrated clearly by deterministic models, which 

divide a population into compartments based on disease status and depict disease transitions as 

predictable flows among groups.  Here we consider a non-fatal disease, without a significant 

latent period, from which individuals recover to a state of permanent immunity—we therefore 

use a so-called SIR model, named after the three disease compartments.  Due to the critical role 

of the transmission process in determining population thresholds, we analyse the model for both 

density-dependent and frequency-dependent transmission.  Because inflow of new susceptibles is 

essential to the long-term persistence of such a disease, we include a simple treatment of 

demographic dynamics.  The models are as follows: 

  
S, I, R = densities of Susceptible, Infectious, 

and Recovered hosts (N = S + I + R) 

λ = input of new susceptibles 

δ = death rate not associated with disease 

γ = recovery rate of infecteds 

β = transmission coefficient 

Transmission: Density-Dependent (βI) Frequency-Dependent (βI/N) 
Model equations: 
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For both models, the total population size has a stable equilibrium at N* = λ/δ.   

 We immediately gain several insights from these simple models.  Because R0 increases 

with N in the model with density-dependent transmission, we predict a population threshold for 

invasion 
β

δγ +=TN .  Conversely, in the frequency-dependent model R0 depends only on rate 

parameters, so there is no population threshold for invasion [16, 57].  

With regard to persistence, we first ask whether an endemic equilibrium is possible at all.  

For both simple models, non-zero values of I* exist whenever R0>1—if a disease is able to 

invade, then it will reach endemic steady state in the deterministic model [21].  Therefore, for 

density-dependent transmission the existence of an endemic equilibrium depends on population 

density, whereas for frequency-dependent transmission it does not.  Another important question 

is how far the endemic equilibrium is from I=0.  While deterministic models do not include 

random fluctuations, in real populations there is greater danger of stochastic fadeout when I is 

small (just as for population fluctuations of severely endangered species).  All else being equal, 

the disease will persist longer for larger values of I*.  Note that the endemic equilibria for both 

models can be written 
0

**
R
NS =  and 








−

+
=

0

11
1

**
R

NI
ρ

,  where δγρ =  is the ratio of mean 

host lifespan to mean infectious period [35].  For a given value of R0>1, therefore, we expect I* 

to increase with N* in both models, and hence we expect persistence times to increase gradually 

with N*.  Note that I* also decreases as ρ increases, so transient diseases are predicted to be 

more vulnerable to stochastic fadeout. 



Lloyd-Smith et al.  3/1/2005 

 - 16 - 

 Box 2. Density dependence and the critical community size 

A core assumption underlying the CCS is that the rate of susceptible replenishment 

(usually due to birth and/or immigration) increases with population size [7, 28, 30].  In human 

systems, the population growth rate generally satisfies this assumption (Fig Ia).  In wildlife 

systems, however, density-dependent effects can dominate recruitment, such that the 

replenishment rate of new susceptibles may actually decrease as N increases (Fig Ib).  Many 

different curves—some highly non-linear—can describe the relationship between population size 

and recruitment rates, and often death rates also exhibit density dependence [58].  Immigration 

and emigration can vary similarly, as animals distribute themselves via density-dependent habitat 

selection [59].   

These ecological complexities contribute uncertainty to the already fuzzy CCS, casting 

doubt on its general applicability in wildlife disease systems.  They also introduce potential for 

perverse outcomes of control efforts: culling programs may increase birth rates (through 

compensating recruitment) or immigration (as conspecifics re-colonize a cleared habitat via the 

“vacuum effect” [46]), thus increasing the chance of disease persistence [36, 46].  Finally, 

disease-induced mortality of a host species may itself interact with density-dependent effects, 

generating complex dynamics and possible feedback cycles with unpredictable effects on disease 

persistence. 
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Figure I.  Annual population growth for (a) humans from 187 countries from 1960 to 2000 and (b) wildebeest in the 

Serengeti.  Data redrawn from [60].  Human population density was calculated using the amount of arable land 

available in 1960.  Third-order polynomials were fit to the data with the y-intercept set to zero. 
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Box 3. Simple theories, complex realities 

The theoretical results presented in the text apply to well-mixed host populations in 

constant environments, with single directly-transmitted pathogens and no alternative host 

species.  The insights obtained are valuable, but real disease systems exist under much more 

complex conditions.  The following complexities are found in many real systems, both human 

and wildlife: 

• Spatial or social structure in a population can impede disease invasion [25], and can help 

or hinder persistence depending on the strength of coupling between subgroups [14, 35, 

61].  The relevant scale to measure N can be unclear, and will depend on the relative 

frequency of between-group movements [62].  Group-level heterogeneities further 

obscure threshold determination, e.g. a disease may invade and persist in a high-risk core 

group but not in the general population [21]. 

• Disease-host systems involving additional complexities, including macroparasitic and  

vector-borne diseases, or those with environmental reservoirs, may exhibit altered or 

additional thresholds [2, 36]. 

• Transmission rates vary seasonally due to environmental or social changes, potentially 

coupling with natural timescales of the disease-host interaction to produce dramatic 

effects on invasion or persistence [30, 31, 63, 64]. 

• Host-pathogen coevolution influences long-term persistence of endemic diseases [65] 

through immune escape mechanisms [66] and evolution of virulence [67], and can 

influence invasion of novel pathogens via adaptation to the new host [68]. 

• In wildlife, density-dependent effects in recruitment, death and movement alter 

population responses to changes in N [46]—see Box 2. 



Lloyd-Smith et al.  3/1/2005 

 - 19 - 

• Strong seasonality in wildlife births will increase fadeout due to irregular supply of new 

susceptibles, and variation in per capita birth rates can be an order of magnitude higher 

than in humans [60].  Wildlife populations also fluctuate due to trophic interactions and 

environmental stochasticity, again favouring fadeout during periods when N is low. 

• Alternative host species can change the basic dynamics of transmission, particularly if 

they act as endemic reservoirs for a disease [69].  In evaluating persistence, it is critical to 

distinguish true single-host persistence from repeated failed invasions from a reservoir or 

sustained interspecific transmission [39, 41, 70]. 
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Table 1. Selected empirical studies testing for population thresholds for wildlife disease  
 

Ref Host Pathogen(s) 

Sampling 

unit 

(number of 

individuals 

per unit) 

Duration 

of study

Type of evidence and 

conclusion 

Observations 

 

[9] Great gerbils 

(Rhombomys 

opimus) 

Plague 

(Yersinia 

pestis) 

2 

populations 

 

40 yr • Prevalence over 

time 

• Statistical model 

 

Periods of plague 

absence suggest a 

population threshold 

for invasion and 

persistence 

Strong data, but 

model did not 

distinguish between 

invasion and 

persistence; 

Possible effects of 

vector; 2-year lag 

between host 

abundance and 

disease 

[8] Bank voles 

(Clethrionomys 

glareolus) and 

wood mice 

(Apodemus 

sylvaticus) 

Cowpox 15 

populations 

(5-140) 

2 yr • Prevalence as a 

function of host 

densities and 

numbers 

• Estimates of 

movement 

 

Evidence for “fuzzy” 

Limited replication 

relative to the large 

effects of 

stochasticity in 

small populations; 

Possible alternative 

hosts; Unknown 

effect of 

background 
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invasion and 

persistence thresholds 

in one host species, in 

population number 

(but not density) 

populations in 

single mainland 

patch 

[13] Semi-feral 

dogs (Canis 

familiaris) 

Rabies 3 

populations 

 

3-5 yr • Rabies presence or 

absence as a 

function of host 

density and 

number 

 

Evidence for CCS in 

population density (but 

not number) 

Limited replication; 

Possible alternative 

reservoirs; No 

temporal replication

[14] Harbour seals 

(Phoca 

vitulina) 

Phocine 

distemper 

virus 

Pooled 

datasets for  

25 sub-

populations 

 

1-2 yr • Observed fade-

outs 

• Mathematical 

modelling 

 

If CCS exists, it is 

much larger than the 

entire population 

Only mathematical 

support of CCS; 

Possible alternative 

hosts 

[12] American 

bison (Bison 

Brucella 

abortus 

Pooled 

datasets for  

Datasets 

cover 

• Prevalence as a 

function of host 

No data below 

putative threshold; 
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bison) 18 herds  

(200-3200)  

45+ yr density 

 

Brucella fails to invade 

herds of less than 200 

individuals 

Only one herd 

without brucellosis; 

Possible alternative 

hosts 

[15] African lion 

(Panthera leo) 

Six feline 

viruses 

2 

populations 

(40-260)  

20-25 yr • Outbreaks over 

time as a function 

of the number of 

susceptibles 

 

Certain viruses invade 

only after buildup of 

susceptibles  

Possible alternative 

hosts—source of 

diseases unknown; 

Sparse sampling in 

one of two 

populations 

[30, 

31] 

Humansa Measles 60 cities 

(10,000 – 

30,000) 

22 yr  • # of cases over 

time 

• Mathematical 

modelling 

 

Disease does not 

persist in isolated 

populations of less 

than 250,000 

individuals 

Strongest example 

of CCS to date 

 
a This classic example is included for comparison to human disease systems. 
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Figure 1 
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Figure 2 
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Glossary 
 
Basic reproductive number (R0):  The expected number of secondary cases caused by the first 

infectious individual in a wholly susceptible population.  This acts as a threshold criterion 

because disease invasion can succeed only if R0>1.  

 

Critical community size (CCS):  The population size above which stochastic fadeout of a disease 

is less likely.  Because disease dynamics do not change sharply with population size, the CCS is 

traditionally set by subjective assessment or arbitrarily chosen criteria.  Originally defined in the 

context of epidemic fadeout, the CCS is now often used as a general term for any population 

threshold for disease persistence. 

 

Demographic stochasticity:  The variation evident in dynamics of small populations due to the 

probabilistic nature of individual processes such as birth, death or transmission. 

 

Deterministic model: A mathematical or simulation model in which chance plays no role, so the 

results are determined entirely by model structure, parameter values, and initial conditions. 

 

Effective reproductive number (Reff): The expected number of secondary cases caused by each 

infectious individual in a partially immune population.  In well-mixed populations this will equal 

Reff = sR0 where s is the fraction of the population that is susceptible. 
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Endemic fadeout: Extinction of the disease from a stable endemic state due to random 

fluctuations in the number of infected individuals (represented by the quasi-stationary 

distribution of I). 

 

Epidemic fadeout:  Extinction of the disease during the period following an epidemic when the 

pool of susceptibles is depleted.  This can be result from random fluctuations in the number of 

infected individuals or from a protracted period with Reff<1. 

 

Herd immunity: A phenomenon whereby disease can be excluded from a population despite the 

presence of some susceptibles, because the proportion of individuals that are immune is 

sufficient to ensure that Reff<1.  

 

Quasistationary distribution: The stationary distribution of a quantity (here, the number of 

infected individuals, I) conditional on not having gone extinct yet.  This concept is used to 

describe “equilibrium” behaviour in stochastic models where extinction is assured as time goes 

to infinity. 

 

Stochastic model: A mathematical or simulation model incorporating chance events, particularly 

important when small numbers of individuals play an important role (as in invasions) or when 

fluctuations around mean behaviour are important.  

 

Threshold population for invasion (NT): The minimum population size required for a disease to 

be able to successfully invade a host population. 
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Figure legends 

 
Figure 1.  Distribution of outbreak sizes for diseases with different R0 values and host 

population sizes. Histograms show the total number of individuals infected in each of 1000 

simulated SIR outbreaks.  Each outbreak began with one infectious individual and N 

susceptibles.  Simulations were based on the discrete-time analogue of the frequency-dependent 

model in Box 1, but for simplicity we depict the per-timestep probabilities of recovery and death 

using the continuous-time rates γ and δ (a slight approximation, because the exact probabilities 

have the form 1−e−γ).  In these simulations, the demographic rates λ=δ=0, and γ=0.1.  For each 

susceptible, the infection probability per timestep was 1−exp(−βI/N), with β=γR0.  Because N 

was fixed, this is precisely equivalent to density-dependent transmission with infection 

probability 1−exp(−β′I) and β′=γR0/N. 

 

Figure 2. Endemic and epidemic fadeout 

(a) Endemic fadeout: 10 stochastic simulations of endemic disease dynamics, begun from 

endemic equilibrium conditions (+ signs show instances of endemic fadeout, when I fluctuated to 

zero). Black line shows cumulative fraction of runs with disease fadeout, out of 1000 stochastic 

simulations.  N* = λ/δ = 10000, δ = 0.001, ρ = γ/δ = 100. 

(b) Epidemic fadeout: 10 stochastic simulations of epidemic disease dynamics, begun with 

S=4999, I=1, R=0 (+ signs show instances of epidemic fadeout during the trough in I following 

the first epidemic peak). N* = λ/δ = 5000, δ = 0.003, ρ = γ/δ = 33.3. 

(c) Average time (out of 1000 runs started at the endemic equilibrium) to endemic fadeout as a 

function of N and the relative rate of demographic turnover.  Along each curve, equilibrium 

population size, N* = λ/δ, was varied by changing the input of new susceptibles, λ, while 
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keeping δ constant. Different rates of demographic turnover (i.e. different curves at a given 

population size) were achieved by simultaneously varying λ and δ, while keeping the ratio N* = 

λ/δ  constant. Thus δ varies between curves, which alters ρ = γ/δ . For curve (i) δ = 0.002, ρ = 

γ/δ = 50; for (ii) δ = 0.001, ρ = γ/δ = 100; and for (iii) δ = 0.0005, ρ = γ/δ = 200.  

(d) Probability of persisting through the first inter-epidemic trough as a function of N and the   

relative rate of demographic turnover, estimated from the fraction of 10,000 runs that persisted 

(starting with S=N*–1, I = 1, and R = 0, conditional on successful invasion of the disease). 

Equilibrium population size, and demographic turnover rates were varied as in (c). For curve (i) 

δ = 0.005, ρ = γ/δ = 20; for (ii) δ = 0.003, ρ = γ/δ = 33.3; and for (iii) δ = 0.002, ρ = γ/δ = 50. 

With δ = 0.001, ρ = γ/δ = 100 no runs persisted through the first trough. 

In all panels, simulations were based on the same model as in Figure 1, with β = (γ+δ)R0, R0 = 4, 

and γ = 0.1. 

 


