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Abstract 

The epidemic potential of a disease is traditionally assessed using the basic reproductive 

number, R0.  In populations with social or spatial structure, however, a chronic disease is 

more likely to invade than an acute disease with the same R0, because it persists longer 

within each group and allows for more host movement between groups.  Acute diseases 

‘perceive’ a more structured host population, and it is more important to consider host 

population structure in analyses of these diseases.  The probability of a pandemic does 

not arise independently from characteristics of either the host or disease, but rather from 

the interaction of host movement and disease recovery timescales.  The  statistic, a 

group-level equivalent of R

*R

0, is a better indicator of disease invasion in structured 

populations than the individual-level R0.  
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INTRODUCTION 

At the turn of the 20th century, rinderpest swept through Africa, devastating 

populations of African buffalo and wildebeest (Sinclair 1977; Plowright 1982; Anderson 

1995).  From 1929 to 1983 recurrent rinderpest outbreaks occurred in the buffalo and 

eland populations of Central and Eastern Africa, while many other ungulate species, such 

as duikers, steenbok, oribi, roan, sable and gerenuk, were relatively unaffected (Anderson 

1995).  Why were some hosts affected more than others?  Traditionally, this may have 

been explained by immunological differences in susceptibility.  We illustrate, however, a 

significant component of behavioral susceptibility exists that is not a simple function of 

group size or population density, but rather the interaction of group size and host 

movement. 

Risk of disease is assumed to be a significant cost of group living (Freeland 1976; 

Moller et al. 1993), yet recent comparative analyses that investigated the effect of group 

size on the immune system or parasite diversity have had mixed results (Cote & Poulin 

1995; Nunn et al. 2000; Nunn 2002; Stanko et al. 2002; Tella 2002; Nunn et al. 2003a; 

Nunn et al. 2003b).  These mixed results may be due, in part, to the interaction of 

movement and group size, whereby reduced movement rates can mitigate some costs 

associated with larger group sizes.  Specifically, large groups will be exposed to fewer 

introductions of disease if movement between groups is sufficiently rare. 

Several recent theoretical studies have investigated the role of host population 

structure in the invasion or persistence of disease (Hess 1996; Swinton et al. 1998; 

Keeling 1999; Keeling & Gilligan 2000; Keeling & Grenfell 2000; Thrall et al. 2000; 

Park et al. 2001; Fulford et al. 2002; Keeling & Rohani 2002; Park et al. 2002; 
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Hagenaars et al. 2004).  These studies incorporated host movement into structured 

disease models either phenomenologically or mechanistically.  Models with mechanistic 

host movement explicitly move individuals from one group to another (e.g. Hess 1996; 

Thrall et al. 2000; Keeling & Rohani 2002).  Models with phenomenological host mixing 

assume that hosts do not move between groups but can infect others within and among 

groups simultaneously (e.g. Ball et al. 1997; Swinton et al. 1998; Hagenaars et al. 2004). 

The phenomenological approach may be appropriate for plant-pathogen systems (e.g. 

Park et al. 2001; Park et al. 2002), but can obscure the relationships between host 

movement, group size, and disease recovery in mobile host populations.  For example, in 

a system where between-group movements are rare, an epidemic of an acute, highly-

transmissible disease may run to completion within a group before any individual moves 

and spreads infection to a new group.  A mechanistic model more readily captures this 

possibility, while a model with phenomenological mixing between groups does not.  In 

this study, we investigate how the interactions of group size, movement and recovery 

affect the probability of invasion by disease into structured populations using a 

mechanistic mixing model.  

Lloyd-Smith et al. (2004) showed that transmission of sexually-transmitted 

diseases is well-described by a phenomenological mixing model when partner exchange 

is very rapid relative to the infectious period, and otherwise a mechanistic pair-formation 

model is required.  Keeling and Rohani (2002) reached similar conclusions for a two-

patch system where host mixing was frequent.  We expand upon these analyses by 

exploring a broad range of relative timescales of movement and disease recovery as well 

as group and population size.  Our analysis is motivated by questions regarding the 

 - 4 -    



Dueling timescales of disease and host  Cross et al.  

invasion of disease in wildlife populations where host movement between groups can be 

rare or relatively frequent (e.g. natal dispersal versus frequent fission and fusion of entire 

groups), infectious periods range from several days to several years (e.g. rabies versus 

bovine tuberculosis), and group sizes range from monogamous pairs to thousands of 

individuals.  We focus on directly-transmitted diseases where hosts may move among 

groups, but contacts that are sufficient for disease transmission occur only within a group.  

These groups may reflect either social or spatial structure in the host population. 

The basic reproductive number, R0, is the expected number of infections caused 

by a typical infectious individual in a completely susceptible population (Anderson & 

May 1991).  The R0 statistic has been the traditional standard by which epidemiologists 

and disease ecologists quantify the potential growth of a disease (Anderson & May 1991; 

Diekmann & Heesterbeek 2000).  In stochastic models, a disease cannot invade the entire 

system when R0 ≤ 1 and has a non-zero probability of invading only when R0>1.  In the 

simplest case of an SIR (Susceptible-Infected-Recovered) disease (Anderson & May 

1991), R0 is the ratio of two rates, or timescales: the infection rate and the recovery rate.  

If transmission is density independent, with rate parameter β, and the recovery rate γ is 

constant, then γβ=0R  (McCallum et al. 2001).  Further, the average length of the 

infectious period is 1/γ.  We use a stochastic metapopulation model to illustrate the 

importance of another ratio of two timescales, specifically the ratio of the rates at which 

hosts move between groups (µ) and recover from disease (γ).  For the simple case of 

constant recovery and no mortality, this ratio, µ/γ, is the expected number of times an 

infectious individual will move between groups. 
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First, we describe the simulation model and explore how the interactions of group 

size, host movement, and infectious period affect the probability of invasion by a disease.  

Next, we describe a relatively new metric of disease invasion, , which is the number of 

groups that are expected to become infected from the initially infected group (Ball et al. 

1997).  In other words,  is the group-level analogue of R

*R

*R 0.  We then use the simulation 

model to estimate R0 and  and demonstrate that  is a better predictor of disease 

invasion in structured populations with mechanistic host movement between groups.  We 

conclude with a number of testable predictions that follow from the ideas presented here. 

*R *R

 

DEMONSTRATION OF DUELING TIMESCALES EFFECT 

We use an individual-based, stochastic, discrete-time SIR model to investigate 

how the dueling timescales of host movement and disease recovery affect the ability of a 

directly-transmitted disease to invade a spatially, or socially, structured population.  The 

total host population is evenly divided into an array of groups.  The host population is 

further subdivided into susceptible, infected, and recovered classes where S, I, and R are 

respectively the number of hosts in each category.  Three processes are described in the 

model: movement between groups, infection, and recovery of infected hosts.  Since the 

intent of the model is a qualitative description of different interactions, we have 

simplified these processes as much as possible.  For the case presented here, we consider 

a successful invasion to have occurred when the disease becomes a pandemic and 

infections occur within all groups of a structured population.  This narrow definition does 

not count disease establishment within a single patch as an invasion, but instead 
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emphasizes the spread of the disease among groups which is the phenomenon of interest 

here. 

We assume that movement between groups is density independent, and all 

individuals have a constant probability, µ, of leaving their current group each time step.  

Groups are organized on a square lattice and individuals can only move to their four 

nearest-neighboring groups.  To avoid boundary effects, opposite edges of the array are 

connected to create a torus.  In the supplementary material, we expand the analysis to 

include a loop structure, where each group has only two nearest-neighbors, and a 

spatially implicit array, where individuals can move to any other group within a time step 

(equivalent to the ‘island’ model used previously (Hess 1996; Fulford et al. 2002)).  We 

assume that infected individuals recover to an immune class with a constant probability, 

γ, per time step.  

To isolate the effects of host movement and facilitate the comparison of disease 

dynamics in a range of population structures, we assume disease transmission is 

frequency-dependent (Getz & Pickering 1983).  Thus the probability of infection per time 

step for each susceptible in group i is given by the expression ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

i

i

N
I

βexp1 , where β 

is the transmission coefficient, Ii is the number of infected individuals in group i, and Ni 

is the total number of individuals in group i.  Since we do not incorporate host 

demographic dynamics, the assumption of frequency-dependent rather than density-

dependent transmission represents a rescaling of the transmission coefficient β.  If 

contact or transmission rates increase with population density (McCallum et al. 2001), 

then disease invasion would be even less likely when the population is divided into many 
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small groups than indicated by results presented here, but our overall conclusions about 

the interaction of movement and recovery timescales would still hold. 

In a continuous-time model with frequency-dependent transmission and a 

constant recovery rate, R0 = β/γ (Anderson & May 1991; McCallum et al. 2001).  For the 

discrete-time model used here, β/γ is an approximation of R0, which works well when the 

probability of infection per timestep is small and group sizes are relatively large.  The 

approximation does not change our qualitative conclusions, however, so for clarity we 

refer to the ratio β/γ as R0.  We also assume that disease invasion is fast relative to birth 

and death rates, so the total population size is constant.  Each simulation starts with one 

infected individual, and all groups begin with the same number of individuals.  Since our 

spatial model was symmetric, group sizes remained relatively constant during the course 

of each run. 

We begin by comparing the dynamics of two diseases with the same R0 value 

(β/γ) but where one disease is slow (i.e. a chronic disease with a relatively long infectious 

period; β = 0.05, γ = 0.01) while the other is an order of magnitude faster (β = 0.5, γ = 

0.1).  For time steps of 1 day, these parameters correspond to mean infectious periods of 

100 or 10 days, respectively. We simulated the invasion of these two diseases in three 

different host population structures: 1 group of 1000 individuals (equivalent to the 

common “mean-field approximation” of random mixing among all individuals), 25 

groups of 40 individuals, and 100 groups of 10 individuals. 

As expected, subdividing the population into more groups decreases the 

probability of pandemic (Wilson & Worcester 1945) because it decreases the average 

group size and increases the number of between-group jumps the disease must make to 
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penetrate the entire population.  A less obvious effect is that slower diseases are more 

likely to invade a structured population, even if they have the same R0 as a faster disease.  

For the case of 100 groups of ten individuals, the slow disease (γ = 0.01, β = 0.05) 

infected, on average, far more individuals than the fast disease (γ = 0.1, β = 0.5) before 

the disease died-out (658 45 SE compared to 19± ± 2.3 SE; Fig. 1).  This typifies the 

interaction of the host movement and disease recovery timescales: diseases with longer 

infectious periods allow more time for host mixing to occur and thus experience 

populations that are effectively larger.  When the movement rate is zero, neither a fast nor 

slow disease will invade the entire population regardless of the value of R0.  When 

movement is very frequent, both the fast and the slow disease are likely to invade the 

structured population provided that R0>1.  

The simulated epidemics in the one-group and 100-group populations differ 

markedly, but were less different for the slow disease compared with the fast disease.  In 

other words, approximating a structured population by a mean-field model (i.e. a single 

group with homogenous mixing of hosts) is more appropriate for slow diseases than fast 

diseases (Fig. 1; Cross 2004).  The faster the disease, the more important it is to 

incorporate the spatial/social structure into any analysis.  The mean infectious period 

(1/γ) defines the natural disease timescale, and when movement occurs on this timescale 

or slower then movement should be incorporated mechanistically, rather than 

phenomenologically.    

 

INSERT FIGURE 1 
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Next we examine a range of host movement and recovery probabilities.  The 

proportion of the population infected over the course of an epidemic depends on the 

expected number of group changes per infectious lifetime (µ/γ), on R0 (β/γ), and on group 

size (Fig. 2).  When movement is infrequent relative to the recovery rate, R0 has little 

predictive ability because few infections result for all values of R0 (Fig. 2a).  If movement 

is frequent relative to recovery, increasing R0 increases the average proportion of the 

population that becomes infected (Fig. 2a), consistent with predictions from mean-field 

models (Anderson & May 1991; Diekmann & Heesterbeek 2000).  Increasing the host 

group size decreases the amount of host movement required for the disease to invade the 

entire population (Fig. 2b).  Larger groups experience larger within-group outbreaks, and 

hence more infected individuals dispersing from each infected group (given density-

independent movement).  For our model with frequency-dependent transmission, the total 

number of infected individuals is, on average, a fixed proportion of group size; for 

density-dependent transmission, the proportion infected would increase with group size, 

causing greater increases in the number of infected dispersers. 

For high values of R0, the ratio µ/γ yields a sharp threshold for invasion (Fig. 2b).  

As a rule of thumb, a disease will invade the metapopulation if µ/γ is greater than the 

reciprocal of the expected number of individuals that will be infected within a single 

group.  This makes intuitive sense because in this model system µ/γ is the expected 

number of between-group movements made by each infectious individual.  Thus, µ/γ 

multiplied by the expected number of infected individuals is the expected number of 

infected dispersers per group—which must exceed one for a pandemic.  When R0 is high, 

almost all individuals in a group will be infected, so for a pandemic µ/γ should be greater 
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than the reciprocal of the average group size.  For example, if the group size is 200, then, 

on average, more than one infectious individual in 200 will need to move between groups 

(i.e. µ/γ  > 0.005) for a pandemic to occur. 

 

INSERT FIGURE 2 

 

The mean proportion of the population that becomes infected, shown in Fig. 2, 

obscures the underlying distribution of the number of infections per epidemic (i.e. over 

different runs of the stochastic simulation).  It is incorrect to assume that the mean of this 

distribution is similar to the median or mode, because in many cases the distribution is 

bimodal with peaks centered on zero and one or close to one (Fig. 3c, f, i).  When 

movement is very infrequent relative to recovery, the probability of a pandemic is close 

to zero because the disease almost always dies out within the initial group (Fig. 3a,d,g).  

When movement is frequent, then the disease tends to either die out stochastically within 

the initial group or invade most or all of the metapopulation (Fig. 3 c, f, i), with the 

relative frequencies of die-out versus invasion determined by R0 as in mean-field models 

(Diekmann & Heesterbeek 2000).  With intermediate movement rates variation is 

considerable with regard to the extent to which the disease penetrates the population (Fig. 

3b). 

 

INSERT FIGURE 3 
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These results (Fig. 2a, Fig. 3) agree with previous studies when µ/γ is either much 

greater than one or close to zero.  When µ/γ is large, then group structure of the 

population is less important and β/γ is a good predictor of disease invasion (Fig. 2a).  

When µ/γ is close to zero then β/γ is a good predictor of disease invasion within the 

initial group, but the probability of the spread of disease between groups is rather small.  

For the intermediate scenarios we analyzed, however, the ratio of movement to recovery 

rate (µ/γ) has greater influence on the invasion of a disease than β/γ.  

 

PREDICTORS OF A PANDEMIC  

Recent theoretical work has extended the R0 concept to account for depletion of 

the susceptible pool (Keeling & Grenfell 2000), host spatial structure (Keeling 1999; 

Fulford et al. 2002), and populations with heterogeneous infectiousness or susceptibility 

(Diekmann & Heesterbeek 2000).  However, even after incorporating these effects R0 

may be misleading in metapopulations with limited mixing, since R0 as it is traditionally 

used, is an individual-based measure.  Ball and colleagues demonstrated that the 

individual-based R0 is not the best predictor of disease invasion in structured host 

populations and introduced a group-level reproductive number, , which is the average 

number of groups infected by the initially infected group (Ball et al. 1997; Ball 1999; 

Ball & Lyne 2001; Ball & Neal 2002; Ball et al. 2004).  This finding has been echoed in 

the context of reproductive fitness of a new mutant in a metapopulation (Gyllenberg & 

Metz 2001; Metz & Gyllenberg 2001).  In a model with phenomenological mixing, 

 is the formal threshold criterion for invasion of a disease into an infinite number 

of finite-sized groups (Ball et al. 1997).   

*R

1>R*
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The phenomenological mixing model used by Ball et al. facilitates analysis, but to 

demonstrate the utility of the  metric in the context of interacting timescales of host 

movement and recovery, we applied our simulation model with explicit host movement 

between groups.  For the model described above, we estimated R

*R

0 and  by tracking the 

mean number of infections caused by the initially infected individual or group, 

respectively.  Then we averaged these estimates of R

*R

R

R

R

ˆ ˆ

R

0 and  over many runs of the 

stochastic model.  When a susceptible individual was infected and two or more infected 

individuals were present within the group, we randomly allocated the infection to only 

one of those infectious individuals.  To estimate , we tracked the number of groups that 

were infected by individuals that were themselves infected within the index group.  

Infected individuals had to move to a completely susceptible group and cause infection 

there in order to contribute to .  When individuals from multiple groups moved to a 

susceptible group and caused an infection, we randomly allocated the infection to one of 

the individuals (and thus its source group).  The mean estimates over many simulations, 

denoted as  and , are “empirical” in the sense that they are based on data collected 

from simulated epidemics mimicking epidemiological contact-tracing data.  As estimates 

from model output, they incorporate the effects of spatial structure, host movement, and 

depletion of the susceptible pool.  Thus they will differ from traditional analytical R

*

*

*

0R *R

0 and 

 values, which assume an infinite susceptible population and, hence, overestimate the 

value of these parameters when populations have a finite size.     

*

We simulated the model using a range of transmission (β) and movement (µ) 

probabilities, a fixed recovery probability γ = 0.1, and an 11x11 toroidal array with ten 

individuals per group and nearest neighbor movement.  Each parameter set was simulated 
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1000 times to generate mean values of  and .  We then plotted the relationship 

between the model output variables , , and the proportion of the population infected 

(Fig. 4, Fig. S2.).  Each line in Figure 4 corresponds to a fixed within-group transmission 

rate (β) and a range of movement probabilities increasing from left to right.   

0R̂ *R̂

0R̂ *R̂

 The empirical individual-level  is not a good predictor of the mean proportion 

infected: even when  is much greater than one, the mean proportion infected may be 

low depending upon the movement probability (Fig. 4a, Fig. S2).  Also for different β, 

the proportion infected appears to show a threshold at different values of .  The group-

level , on the other hand, is a much better predictor of a pandemic in a structured 

population (Fig. 4b).  In an idealized metapopulation,  is the threshold above 

which there is a finite probability of disease invasion (Ball et al. 1997).  In our 

simulations, the proportion infected begins climbing at  and rises most steeply 

around  (Fig. 4b).  This gradual transition around the threshold is typical of 

stochastic epidemic models, particularly with spatially-constrained mixing, because the 

invasion has many chances to die out before invading the entire population.  When 

transmission rates (and hence R

0R̂

0R̂

0R̂

*R̂

1* >R

1ˆ
* ≈R

2ˆ
* ≈R

0) are low,  is small for all values of movement (Fig. 

4b, β = 0.1).  When transmission is intermediate and movement is frequent, the disease 

will either stochastically die out in the initial group or invade the entire population 

(Fig.3d, e, f), resulting in intermediate values of  and mean proportion infected (Fig. 

4b, β = 0.5 and 1).  Finally, when both movement and transmission rates are high,  and 

the mean proportion infected are also high.   

*R̂

*R̂

*R̂
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INSERT FIGURE 4 

FUTURE EMPIRICAL RESEARCH 

These findings suggest important directions for empirical studies, as well as a 

number of testable predictions.  Previous analyses of disease presence/absence in 

different host social structures have not considered the interaction between movement 

rates and the duration of the infectious period (e.g. Cote & Poulin 1995; Nunn et al. 

2000; Altizer et al. 2003; Nunn et al. 2003a; Nunn et al. 2003b).  Our results illustrate, 

however, that it is the relative timescales of movement, recovery, and infection that 

determine the probability of a pandemic.  A slow, chronic disease may “perceive” a host 

to be relatively well-mixed with frequent movement of individuals among groups.  An 

acute disease will perceive that same host population to be more structured because 

movements between groups are less frequent relative to the timescale of the infectious 

period (Cross et al. 2004).  We hypothesize that all else being equal, chronic diseases will 

be more likely to penetrate structured populations than acute diseases.  Conversely, we 

hypothesize that behaviorally susceptible host species, with large groups and frequent 

movement, are likely to be more heavily impacted by acute diseases than hosts with small 

groups and infrequent movement.  Thus the ratio of acute to chronic diseases found in 

different host populations should increase as a function of group size and movement rate.   

A major focus of recent disease ecology has been how transmission or contact 

rates depend on population density (e.g. Bouma et al. 1995; Begon et al. 2003), but for 

metapopulations, we have shown that movement rates are also critical to understanding 

disease invasion (Figs. 2-4).  Despite the importance of host movement, very few studies 
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have been published that examine the amount of mixing between groups of many wildlife 

species.  Our results can help to guide the design of field studies intended to estimate host 

movement for disease models.  The proportion of individuals that should be tracked and 

the duration of the study will depend upon the infectious period of the disease as well as 

the average group size of the host.  As group sizes and infectious periods increase, the 

amount of movement required for a pandemic to occur decreases.  Low movement rates, 

however, will require researchers to track more individuals to accurately estimate the 

amount of movement among groups.  If group sizes are large, say 200, and the disease is 

highly infectious, say , then only 1 in approximately 200 infectious individuals 

needs to switch between groups for a pandemic to become likely (Fig. 2b).   

50 >R

Researchers may estimate movement between groups using genetic data or 

tracking of known individuals (Waser et al. 1994; Koenig et al. 1996; Cain et al. 2003; 

Nathan et al. 2003).  Radio-tracking or re-sighting data are more effective than genetic 

methods as long as individuals frequently move between groups relative to the duration 

of the study.  Genetic methods of estimating movement will be relevant only for chronic 

diseases in large groups, and their use in a disease context involves at least three major 

assumptions:  1) past movement accurately reflects current movement; 2) short-term 

movements that are likely to be missed in genetic signatures (e.g. foraging rather than 

mating) are unimportant to disease dynamics; and 3) moving individuals are as 

reproductively successful as non-moving individuals (Waser et al. 1994).  

 

FUTURE THEORETICAL RESEARCH 

 - 16 -    



Dueling timescales of disease and host  Cross et al.  

Our findings emphasize that the group-level reproductive number  is a critical 

determinant of invasion success in structured populations.  Analytical formulations of  

in systems with explicit host movement may clarify the important interaction between 

timescales of host movement and disease recovery, and help to formalize the rule of 

thumb proposed above.  Previous work on  has focused on models with 

phenomenological host mixing and an infinite number of groups such that all new 

infections are in susceptible groups (Ball et al. 1997; Ball & Neal 2002; Ball et al. 2004).  

Analogous to recent developments in the theory of  (Keeling 1999, Keeling & 

Grenfell 2000), further work on  should consider finite populations with spatial 

constraints on movement.  Longer dispersal distances and spatial configurations that 

increase the number of neighboring groups (Supplementary Material) will mitigate the 

depletion of susceptible groups and facilitate the invasion of a disease.  These effects are 

implicitly incorporated into our  and  estimates, but analytical exposition would 

help advance our understanding.  

*R

*R

*R

0R

*R

0R̂ *R̂

In our stochastic model, we made a number of simplifying assumptions that could 

be relaxed to make our simulations more realistic.  First, the assumption of a constant 

probability of recovery per time step, γ, results in a geometrically distributed infectious 

period.  The effects of alternative infectious period distributions on  are unclear (cf. 

Keeling & Grenfell 2000).  For instance, with a fixed infectious period, time spent in the 

home group while infectious will increase the number of local infections, but will also 

diminish the infectious period in any new group, thereby decreasing the number of 

infections elsewhere.  A fixed infectious period would also cause fewer individuals to 

recover before moving, compared to the geometric infectious period (with its mode at one 

*R
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timestep).  Second, we have assumed that movement between groups occurs 

instantaneously and without mortality, but if individuals spend time or die during 

movement their infectious lifetime within the next group is reduced, thereby 

decreasing .  Finally, we assumed that disease invasion was fast relative to the 

timescale of host birth and death.  This is less likely to hold for chronic diseases, or for 

acute diseases that lead to rapid mortality rather than recovery.  Both natural and disease-

induced mortality shorten the infectious period and thus reduce R

*R

0 (Anderson & May 

1991) and .  Our broad conclusions about the interaction of host movement and 

disease recovery timescales should still apply, but investigating the effects of host 

demographics and disease mortality on  would be an important extension of this study. 

*R

*R

CONCLUSION 

Traditionally, epidemiologists and disease ecologists have focused on R0 >1 as a 

threshold for disease invasion (e.g. Anderson & May 1991; Diekmann & Heesterbeek 

2000).  We have shown that in metapopulations the relationship between invasion of 

disease and an individual-level R0 is often weak.  Even for very large values of R0, a 

pandemic is unlikely if the expected number of times an individual will move between 

groups during their infectious lifetime (µ/γ) is low (Fig. 2).  Pandemics in structured 

populations require both within-group and between-group transmission, and the group-

level reproductive number  is a better predictor than the individual-level R*R 0 for these 

systems (Fig. 4).  Results from our individually-based stochastic model support the 

analytical results of Ball et al. (Ball et al. 1997; Ball & Neal 2002; Ball et al. 2004), 

which proved that  is the threshold for disease invasion in a population with group 1* >R
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structure.  As a general rule of thumb, the individual-level R0 must be greater than one 

and the expected number of group changes while infectious (µ/γ) multiplied by the 

average group size must be greater than one for a pandemic to occur (Fig. 2b).   

Chronic diseases with longer infectious periods allow for more mixing to occur 

between groups.  As a result, chronic diseases will perceive more thoroughly mixed host 

populations and exhibit dynamics that are closer to those predicted by mean-field models 

than acute diseases (Fig. 1).  For the same R0, chronic diseases are more likely to invade 

structured populations than slow diseases.  ‘Slow’ and ‘fast’ diseases are relative terms: a 

fast, acute disease in a host population with frequent movement between groups may well 

behave like a relatively slow disease in a population with less frequent movement.  The 

probability of a pandemic in a structured population is thus an emergent property of the 

interaction of host and parasite demography and behavior, incorporating a dimension of 

host behavioral susceptibility arising from group size and movement rates.  The results 

presented here, and in a recent paper by Lloyd-Smith et al. (2004), suggest that when 

contact, movement, birth and death processes occur on a timescale similar to that of the 

disease (i.e. the infectious period), these processes should be incorporated 

mechanistically into disease models. 
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Figure 1. Disease invasion depends upon population structure (green circles: 1 group of 

1000 individuals; red points: 25 groups of 40 individuals; blue crosses: 100 groups of 10 

individuals) and the duration of the infectious period.  A mean-field model of one group 

(green circles) is a worse approximation of a structured population for an acute disease 

with γ = 0.1 (a) than a chronic disease with γ = 0.01 (b).  For both diseases β/γ = 5, but 

the slow disease causes more infections in the structured population.  Lines represent the 

mean of 100 simulations.  Simulations with 25 or 100 groups were run on a toroidal 

spatial structure with a movement probability µ of 0.01, such that µ/γ=0.1 (a) or 1 (b). 

 

Figure 2. The interaction of movement (µ), transmission (β), and group size determines 

the mean proportion of the population that becomes infected.  In (a) β varied from 0.2 to 

2 while group size was fixed at 10.  In (b) group size was increased from 5 to 200 while β 

was fixed at 2 (β/γ=20).  Increasing β/γ only affected the proportion infected when 

movement was frequent (a).  Larger group sizes require less movement for the disease to 

invade (b). Each parameter set was simulated 1000 times on an 11x11 toroidal array of 

groups with a constant recovery probability γ of 0.1.   

 

Figure 3. Histograms of the proportion of individuals infected during an epidemic for 

different transmission (β) and movement (µ) values scaled by the probability of disease 

recovery (γ).  Each parameter set was simulated 1000 times on an 11x11 toroidal array of 

groups with 10 individuals each and a recovery probability γ of 0.1.   
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Figure 4.  can be substantially greater than one and yet not cause a pandemic (a), 

whereas  is a much better single predictor of the mean proportion of individuals 

infected (b).  Each line represents a fixed transmission parameter β and a range of 

movement probabilities from zero to one (increasing from left to right) sampled on a log 

scale.  Each parameter set was simulated 1000 times on an 11x11 toroidal array of groups 

with 10 individuals each and a recovery probability γ of 0.1. 
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SUPPLEMENTARY MATERIAL 

In the main text we focused primarily on an 11x11 toroidal array of groups with differing 

group sizes, and hence varying population sizes.  Here we expand our analysis to 

investigate the effect of total population size while group size is kept constant by varying 

the number of groups.  The effect of population size is minimal provided the group size 

remains fixed (Fig. S1a).  At low values of µ/γ though, the proportion infected is higher 

for the 5x5 array than the 11x11 or 21x21 array simply because the initial herd represents 

a greater proportion of the population.  The difference shown in Fig. 2b thus can be 

interpreted as a group size effect rather than an effect of increasing total population size.  

We also investigated the effect of two other spatial configurations: a loop with 

nearest-neighbor movement and a spatially implicit array where an individual could 

move to any other group in one time step.  As expected, disease invasion of the loop 

array requires a higher µ/γ ratio than invasion of the torus due to the depletion of 

susceptible groups (Fig. S1b).  On a loop an infected individual dispersing from any 

given group has only two neighboring groups (compared to four in the torus) that may 

have been infected already by a previously dispersing individual.  In contrast, invasion of 

the spatially implicit metapopulation requires less host movement than the torus because 

all groups are neighbors, thus minimizing the depletion effect by maximizing the number 

of neighboring groups. 

Finally, we present a more complete picture of the relationships among ,  

and the mean proportion infected than shown in Fig. 4.  Similar to Fig. 4, we simulated 

range of transmission and movement probabilities on an 11x11 toroidal array of groups 

with 10 individuals each.  In contrast to Fig. 4, in Fig. S2 each line represents a fixed 

0R̂ *R̂
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movement probability, but a range of transmission coefficients.  When movement is 

infrequent, higher transmission rates cause an increase in , but  and the mean 

proportion infected are relatively unaffected.  Increasing the movement probability 

increases , for a given value of β.  Note that when  is near one then both  and the 

average proportion infected are low: if the disease is likely to die out within a patch 

( 1) more frequent movement will not lead to a pandemic.  When  is greater than 

one it is not a strong predictor of the mean proportion infected because the penetration of 

the disease into the metapopulation depends upon  and the probability of host 

movement.  For a pandemic to occur both  and  must be significantly greater than 

one (Fig. S2).  

0R̂ *R̂

*R̂ 0R̂ *R̂

0R̂ ≈ 0R̂

*R̂

0R̂ *R̂

Note that there are regions of the -  parameter space where lines are absent.  

If  then  is not greater than one 1 because the disease is unlikely to invade 

multiple groups if extinction is likely within the initial group.  Further, for the simulations 

we conducted with a recovery rate of 0.1,  was usually less than the group size 

because of the competition amongst infectious individuals to infect the remaining 

susceptibles within the group.  can exceed the group size, however, if movement rates 

are high and recovery rates are low. 
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1ˆ
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Fig. S1.  The mean proportion of the population that becomes infected hardly depends on 

the number of groups, or individuals, in the population (a), but does depend on the spatial 

array (b). In (a) the spatial configuration is a torus, but the number of groups (and hence 

total population size) varies.  In (b) all simulations have 121 groups in different spatial 

configurations.  Each parameter set was simulated 1000 times, with a group size of ten 

and a recovery probability γ of 0.1.   

 

Figure S2. The mean proportion of individuals that are infected is a function of the 

average  and average .  Each line represents averages of 1000 simulations with a 

fixed movement probability and varying transmission rates.  Note  can be 

substantially greater than one and yet not cause a pandemic if movement is infrequent.  

All parameter sets were simulated on an 11x11 toroidal array of groups with 10 

individuals each and a recovery probability γ of 0.1. 
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