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Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and 
utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural 
systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon 
(MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of 
its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. 
Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r-LoCoH (kernels constructed from all points within 
a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a-LoCoH (kernels constructed from all points 
within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal 
to a), and compare them to the original ‘‘fixed-number-of-points,’’ or k-LoCoH (all kernels constructed from k-1 nearest 
neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured 
data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate 
that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas 
(holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and 
irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with 
software for all three methods available at http://locoh.cnr.berkeley.edu). 
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INTRODUCTION The reasons for omitting outlying points in estimating the size of 

Ecology is currently undergoing a revolution in terms of our ability HRs are threefold: (1) locations based on relatively inaccurate 

to collect large sets of data with unprecedented precision on the triangulation of radio collars result in imprecise location estimates 

position of individuals in the landscape (e.g. plus-minus several (this is philosophically consistent with the parametric kernel 

meters using current GPS technology [1]) at regularly spaced methods, such as the radially symmetric—i.e. one parameter— 

intervals of time. This revolution is leading to the emergence of bivariate Gaussian or harmonic kernels, that associate a smooth 

movement ecology, a new subfield of ecology [2]. GPS position distribution with each data point); (2) HR area estimates using 

data is often used to construct home ranges (HRs) [3–6] or utiliza- MCP and parametric kernel construction methods are very 

tion distributions (UDs) [7–13], where the former are bounded sensitive to outlying points [21]; and (3) outlying points may well 

areas used by animals for some defined purpose (e.g. foraging or reflect exploratory animal movements rather than those necessary 

seeking mates), while the latter are represented by isopleths for survival and reproduction. The first of these three points is no 

demarcating regions in space with different probabilities or rates of 
usage by individuals. 
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Currently, the boundary of the HR is commonly delimited 

using the 95% isopleth of an unbounded UD, where the UD is Received January 5, 2007; Accepted January 18, 2007; Published February 14, 

typically constructed using the symmetric bivariate Gaussian (i.e. 2007 

a parametric) kernel method [14–19], although other methods Copyright: � 2007 Getz et al. This is an open-access article distributed under the 
may be preferred when the UD is multimodal [20]. For compara- terms of the Creative Commons Attribution License, which permits unrestricted 

tive and other reasons enumerated below, bounds on the use, distribution, and reproduction in any medium, provided the original author 
and source are credited. 

innermost 95% of the data are also used to estimate the areas of 
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longer relevant for methods applied to GPS data since these data 
are spatially precise [22]. 

Here we describe extensions to a recently developed local convex 
hull (LoCoH) approach [23] that produces bounded HRs and has 
been shown to have superior convergence properties compared to 
the parametric kernel methods used in constructing HRs and UDs. 
This LoCoH method is both a generalization of the minimum 
convex polygon (MCP) method and essentially a non-parametric 
kernel method. LoCoH applies the MCP construction to a subset of 
data localized in space, and the local convex polygon (i.e. local hull) 
is constructed using the k-1 nearest neighbors of each data point, 
thereby producing a set of nonparametric kernels whose union is 
the UD. Thus LoCoH uses kernels with forms arising directly out of 
the data, unlike parametric kernels that have a form specified in 
most cases by a one parameter function (e.g. symmetric bivariate 
Gaussian centered on the data point with width parameter h), even 
though the union of these parametric kernels can produce rather 
irregular surfaces with multiple peaks. 

The advantage of LoCoH’s direct use of data becomes evident 
when constructing UDs from data influenced by idiosyncratic 
geometries such as geomorphological boundaries and holes (e.g. 
lakes or rocky outcrops) associated with the space over which 
animals move [23]. In particular, as illustrated in examples 
considered here and elsewhere [23], [24], LoCoH methods are 
more adept than parametric kernel methods at locating such 
geographical features as reserve boundaries, rivers, lakes, in

hospitable terrain, and so on. Further, these features can be 
assessed automatically by linking LoCoH constructions with 
spectral images provided by new remote sensing technologies that 
have resolutions matching or exceeding those of the data (e.g. 1– 
10 m resolution SPOT imagery, Quickbird and Superbird images, 
IKONOS satellite imagery [22]). Statistical analyses can then be 
carried out to address ecological questions relating, among other 
things, to resource use [25] or social behavior [26]. 

In this paper, we present two modifications of the ‘‘fixed k’’ 
LoCoH method, which has been referred to as the k-NNCH (k

nearest neighbor convex hulls) because each local kernel is a k-

point convex hull constructed from a root point and its k-1 nearest 
neighbors [23]. The first modification is a ‘‘fixed radius’’ r, or  r-
LoCoH, method in which all the points in a fixed ‘‘sphere of 
influence’’ of radius r around each root point are used to construct 
the local hulls. The second modification is an adaptive, or a-

LoCoH, method in which all points within a variable sphere 
around a root point are used to construct the local hulls such that 
the sum of the distances between nearby points and the root point 
is less than or equal to a. Thus the adaptive method allows the 
number of points involved in the construction of the LoCoH 
kernels to increase with increasing density of data. 

After presenting a description of the methods and reviewing the 
MSHC approach (minimum spurious hole covering—see [23]) to 
selecting an appropriate value for k, r, or  a, we compare the 
performance of parametric kernel and LoCoH methods in 
estimating UD isopleths from data generated from known 
distributions with challenging spatial features (e.g. narrow valleys 
or corridors). We then compare results obtained from the 
application of parametric and LoCoH kernel methods to both 
manufactured and real data, the latter from GPS collars placed on 
African buffalo in the Kruger National Park, South Africa. In 
particular, we demonstrate the superior performance of LoCoH 
compared with parametric kernel methods in the context of 
estimating the size of HRs and delineating geological and 
ecological features in home ranges. 

Finally, we note that links to software for the implementation of 
LoCoH using ArcView/ArcGIS, or in the R Statistical package 

Adehabitat, or as a web application can be found at http://locoh. 
cnr.berkeley.edu. 

METHODS 
A. Constructions 
Fixed number of points: k-LoCoH As elaborated in more 
detail in Getz and Wilmers [23], the method begins by 
constructing the convex hull associated with each point (the 
root) and its k-1 nearest neighbors. The union of all these hulls is 
finite and can be used to represent the home range of the 
associated individual. (For a method based on a-hulls see Burgman 
and Fox [27]. To obtain a UD, the hulls are ordered from the 
smallest to the largest, where the smallest hulls are indicative of 
frequently used areas. By progressively taking the union of these 
from the smallest upwards, until x% of points are included (with 
some rounding error), the boundaries of the resulting union 
represents the x% isopleth of the densest set of points in the UD. 
Depending on convention the HR can be defined as the area 
bounded by the 100% isopleth of the UD or, for purposes of 
comparison, the 95% isopleth which is the one most commonly 
used for UDs constructed from more traditional, particularly non-

compact, kernels such as the symmetric bivariate Gaussian. 
Fixed radius: r-LoCoH Instead of choosing, as in the fixed k 

LoCoH, the k-1 nearest neighbors to each point, we use all points 
at distance r or closer to the root point to construct the local hull 
associated with the root and all points within a ‘‘sphere of 
influence’’ of radius r. Since all the local convex hulls now are 
approximately the same size, to construct the UD we sort these 
hulls from those containing the most points to those containing the 
fewest, with a size (area) sorting only being used to order hulls 
containing the same number of points. As before, we progressively 
take the union of hulls from most to fewest points and smallest to 
largest when they have the same number of points until x% of  
points (with some rounding error) are included. Also, as before, the 
boundaries of the resulting union represent the x% isopleth of the 
densest set of points in the HR. 

If r is sufficiently small so that some points have only one or no 
neighbors then in the one-neighbor case the point is connected to 
the construction by a line, while in the no-neighbors case the point 
is isolated from the construction. In both cases, the points do not 
contribute any area to the construction. If the proportion of such 
points is p then the area bounded by the construction is the 
100(12p)% isopleth. If construction of a 100% isopleth is needed, 
then the algorithm can be modified to include at least the two 
nearest neighbors irrespective of the value of r. 

The above method for constructing a fixed radius LoCoH is 
reminiscent of fixed kernel methods that use kernels with finite 
support, such as the uniform or Epanechnikov kernels [16], except 
in LoCoH the elements are data dependent and hence variable in 
shape while the parametric kernels have the same repeated 
element associated with each point. 

Adaptive or a-LoCoH method The adaptive or a-LoCoH 
method uses all points within a variable sphere around a root point 
such that the sum of the distances between these points and the 
root point is less than or equal to a. Essentially, this method adjusts 
the radius of the circle that circumscribes each local convex hull, 
such that smaller convex hulls arise in high use areas, thereby 
providing more clearly defined isopleths in regions where data are 
more abundant. Thus, for example, the a-LoCoH method is 
particularly useful in defining UD boundaries that arise when an 
individual regularly visits the shore of a lake, the edge of a cliff, or 
the bank of a river. Also, provided the value a exceeds the sum of 
the two greatest distances between points in our data set, the 
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Figure 1. The actual points used in the analysis, selected at random within boundaries defined in the methods to conform with the specified isopleth 
rules, are plotted here in the upper row for data sets A, B, and C. For each set, the 20% isopleth surrounds the densest aggregation of points that 
appear as relatively black areas in each of the plots. UDs constructed using the fixed kernel least-squares cross-validation method for these data are 
illustrations in the lower row (sizes have been adjusted to provide visual correspondence—where precise estimates of the fits are given in Table 1). 
doi:10.1371/journal.pone.0000207.g001 

construction will always produce the 100% isopleth while keeping 
the radius of LoCoH elements small in high density regions of the 
data. On the other hand, if a does not exceed the sum of the two 
greatest distances between points in our data set, then to obtain the 
100% isopleth we need to specify that at least the two nearest 
neighbors are always included irrespective of the value of a. 

Rules for selecting k, r or a For relatively low values of k, r, 
or a, the resulting LoCoH construction from the union of the 
LoCoH elements associated with each data point may contain 
many unused areas (or holes) that disappear with increasing k, r, or  
a. For HRs with known topologies (i.e. where the number of holes 
that the UD should contain is known ahead of time) the 
‘‘minimum spurious hole covering’’ (MSHC) rule [23] may be 
used to select the smallest value of k, r, or  a that produces 
a covering that has the same topology as the given set (e.g. see 
Figs. 1 and 2). If the topology of the UD is not known, we can 
guess its genus (number of holes) by identifying relatively large 
physical features, such as lakes, mountain peaks, or inhospitable 
habitats. We expect these objects to produce real holes in the data 
that should be reflected in the UD construction. Of course, real 
holes at scales that are relatively small compared with the size of 
the home range may be missed. Differences between real and 
spurious holes in LoCoH constructions may be evident in plots of 
area covered by the UD against the value of the parameter k, r, or  
a: with increasing parameter values the estimated area may level 
off once all spurious holes are covered [23–24], but should 
increase again when one or more real holes becomes totally or 
partially spuriously covered. Identifying these plateaus in UD 
construction determines the value to use. We denote these values 
by k̂ , r̂ and â. Only experience with the method, however, will 
reveal appropriate methods for deciding when this leveling off has 
been achieved. While this MSHC rule is subjective, we show in 
this paper that the a-LoCoH method is remarkably robust to 
changes in the parameter a. 

For our manufactured data sets where the boundaries of the 
areas are known, or in cases of field data where the boundaries of 
particular holes are known, values of the parameters for k, r, and 
a can be obtained by minimizing the sum of Type I and II errors 
(Type I errors arise from excluding regions that are part of the HR 

Figure 2. Kruger National Park, showing the location of the four collared 
buffalo used in the empirical data test of the study. The Satara and 
Lower Sabie regions are shown as insets 1 and 2, respectively. 
doi:10.1371/journal.pone.0000207.g002 
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while Type II errors arise from including regions that are not: see 
[23]) in terms of how well our LoCoH methods identify the 
boundaries of the areas in question. As a starting point for finding 
these optimal values, denoted by k*, r*, and a*, a set of heuristic 
values, denoted by k1, r1, and a1 respectively, were selected using 
the following ‘‘rules of thumb:’’ 

ffiffiffiN k1 ~
p

n values (n is the number of points in the set)


N r1 is half of the maximum nearest neighbor distance between


points (i.e. the radius of a sphere that will allow all points to be 
joined to at least one additional point) 

N a1 is maximum distance between any two points in the data set. 

Parametric kernel constructions For purposes of compar

ison we constructed UDs using symmetric bivariate Gaussian 
kernels. Although we sought to use the optimized value for the 
width parameter, h, using the least-squares cross-validation 
(LSCV) method (see [18]; but see [28] for problems with this 
method), for one of the generated data sets and for the buffalo 
data, the method did not converge using either the R-Adehabitat 
toolbox or the Animal Movement Extension for ArcView 3.x [29]. 
This is a common problem with the method so we used 
Silverman’s ad-hoc method instead for generating the width 
parameter h [14]. 

B. Data 
Manufactured Data We manufactured three datasets (Fig. 1 
A–C) with known 20% and 100% isopleths so that we could use 
these to compare the accuracy of our three methods. 

Dataset A: The 100% isopleth is constructed from a ring 
centered at the (x,y) = (20,0) with an inner radius of one and an 
outer radius of five. The ring contains 78% of the points and was 
connected by a corridor width of 14 and a height of 0.5 containing 
2% of the points. This corridor connects to a circle located at (0, 0) 
with a radius of one that contains 20% of the highest density points 
in the construction. Thus this circle is also the 20% isopleth. We 
randomly distributed 1,000 points in the dataset according to the 
isopleth rules: 78% in the ring, 20% in the small dense circle and 
2% in the connecting corridor. The area bounded by the densest 
20% and the 100% isopleths is 3.1 and 85.3 units respectively. 

Dataset B: The polygon defined by joining lines to the ordered 
set of points (210, 0), (22, 2), (27, 8), (0, 3), (2, 10), (2, 1), (10, 
23), (2, 22), (2, 28), and (0, 23) is the 100% isopleth boundary 
for these data. The 20% densest point aggregation is within the 
triangle (2, 22), (2, 28), and (0, 23). A rectangular hole in the 
data set is bounded by the lower left corner of (20.5, 21.5), and 
has a width and height of 1.5 and 3 respectively. We randomly 
distributed 1,002 points in the dataset concordant with the isopleth 
rules, but otherwise at random. The area bounded by the densest 
20% and the 100% isopleths is 6.0 and 68.0 units respectively. 

Dataset C: The 100% isopleth was created from a circle 
centered at (0, 0) and radius 10, with two circular holes of radius 
2.2 centered at (4, 4) and (24, 4) and a triangular hole with 
vertices (26.5, 23), (6.5, 23), and (0, 27). We constructed the 
20% isopleth from a circle centered at (0, 0) with a radius of one. 
Lastly, we randomly distributed 1,002 points in the dataset 
concordant with the isopleth rules, but otherwise at random. The 
area bounded by the densest 20% and the 100% isopleths is 3.1 
and 257.0 units respectively. 

Buffalo data We collected field data on African buffalo 
movements using VHF and GPS collars place on individuals from 
November 2000 to August 2006 in the Satara and Lower Sabie 
regions of the Kruger National Park. For the purposes of 
demonstrating the LoCoH methodology we restrict our analyses 

to GPS recordings of locations taken once an hour from four adult 
females over the following periods of times: female T13, July 15, 
2005 to Oct 29, 2005; female T15, Sept 16, 2005 to Feb 16, 2006; 
female T7, Sept 15, 2005 to Jan 29, 2006; female T16, July 27, 
2005 to October 8, 2005. These data were collected in decimal 
degrees and re-projected to Universal Transverse Mercator 
(UTM) [WGS84, Zone 36S] in ArcGIS 9. These data represent 
two buffalo at each of two sites in Kruger National Park: the first is 
the Satara region (T07 and T15) and the second is the Lower 
Sabie region (T13 and T16) (Fig. 2). In both regions, areas within 
the range of the buffalo are known to be physically inaccessible. A 
7.7 km2 fenced exclosure exists in the Satara region while a small 
ridge (,4.15 km2) that is too steep for the buffalo to climb exists 
within the Lower Sabie region. Both the exclosure and ridge serve 
as ‘‘known holes’’ that can be used to assess the performance of the 
methods, as discussed below. 

C. Analysis 
Error analysis using manufactured data For each of the 
datasets we constructed k-, r-, and a-LoCoH UDs over a range of 
parameter values. In every case, we calculated the Type I and 
Type II errors associated with the 20% and 100% isopleth 
constructions. We took the total error to be the sum of Type I and 
Type II errors for the isopleth in question; although for some 
applications, if the relative importance of Type I and II errors 
differs, a weighted sum can be used. Here we simply define the 
optimal k, r, or  a to be the values that minimize the total error for 
the corresponding method. As discussed above, for the symmetric 
bivariate Gaussian kernel method we followed the convention of 
using the 95% isopleth to bound the UDs, but also included the 
99% isopleth for purposes of comparison. We then identified the 
isopleth that minimized the total error. 

We constructed images of the resulting LoCoH UDs for our 
optimal parameter values, as well as half and twice the optimal 
values. 

Lastly, we examined how the total error of the UDs constructed 
using the different methods changed as we used different sample 
sizes. We generated random samples containing 1000, 800, 600, 
400, and 200 points using the specifications and isopleth rules 
outlined earlier for each manufactured dataset. We repeated this 
process 15 times (this number is relatively low but suffices if we are 
generating estimates purely for comparative purposes among 
methods) as a way of generating error estimates (i.e. for a total of 
75 samples per dataset). We located the optimal value of k, r, and 
a for each sample and plotted the resulting total error as a function 
of sample size. 

Error analysis using Buffalo data For purposes of compar

ison, we generated UDs for each of the four individuals using each 
of the 4 different methods. Since we were uncertain over what 
range of values we should explore the performance of our MSHC 
algorithm, we initially constructed UDs using our heuristic rules 
for selecting k1, r1, and a1. For the two data sets from Satara, for 
which the exclosure is precisely known, we then assessed to what 
extent the known holes were covered with these initial parameter 
guesses and used this information to locate the values of the 
parameters where the known holes were completely covered for 
the first time—that is the MSHC parameter values k̂ , r̂, and â. For 
all three methods we always ensured that at least the two nearest 
neighbors were included: thus in all cases the 100% isopleth could 
be constructed. We then divided the intervals [0,k̂], [0,r̂], and [0,â] 
into 20 subsections and calculated the proportion of the known 
holes covered for each of the 20 parameter values in question with 
respect to the two data sets under consideration. 
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RESULTS 
Manufactured Data 
For each of the three data sets we plot in Figs 3A–C the total errors 
associated with the k-LoCoH, r-LoCoH, and a-LoCoH construc

tions of home ranges (100% isopleth) and the 20% isopleths as 
a function of the parameters, k, r and a respectively. In the case of 
the home range constructions, the optimal value of r (i.e. the value 
that minimizes the total error associated with the r-LoCoH 
constructions) is evident from the graphs. For the k-LoCoH home 
range constructions, the optimum k is obvious for data set A, but 
less so for data sets B and C. On the other hand, the total error 
curves for the a-LoCoH home range construction become rather 
flat beyond small values of a and the optimum value is not that 

obvious from the graph (which is why, as we will see below, that 
this method is the most robust of the three LoCoH methods). For 
all the cases the value of the parameters that minimize total error 
for the HR are given in Table 1 where, for purposes of compar

ison, the errors associated with the symmetric bivariate Gaussian 
kernel construction are listed for the 95% isopleths, the 99% 
isopleths, as well as the isopleth constructions that minimized the 
total error (to within a resolution of isopleths differing by J%). All 
three LoCoH methods have errors that are considerably lower 
than those of the symmetric bivariate Gaussian kernel (GK) 
constructions. In particular, the a-LoCoH estimates were either 
best (data sets A and C) or tied for best (data set B) with error levels 
between 8.6–8.8%, while the optimal GK estimate error levels 
where 20.9%, 22.2%, and 14.6% for data sets A–C respectively: 

Figure 3. Type I (dotted line), Type II (dashed line) and Total Error (solid line) (percentages) associated with the construction of 100% and 20%

isopleths are plotted for the k-LoCoH, r-LoCoH, and a-LoCoH methods as a function of the parameters, k, r and a respectively for the three data sets

(A, B, and C).

doi:10.1371/journal.pone.0000207.g003
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Table 1. Total Error, with Type I and Type II Errors in parentheses for manufactured data sets A–C, as a percentage of total home 
range size, is listed for estimates obtained using the three LoCoH methods (100% isopleths and optimal—that is error 
minimizing—values k*, r* and a*) and the Gaussian kernel (GK) method (95%, 99% and optimal isopleths). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


Data (true area) A (85.3 units) B (68.0 units) C (257.0 units) 

k-LoCoH 13.4% (8.8%, 4.6%) 8.7% (4.9%, 3.8%) 9.0% (6.7%, 2.3%) 

k& 15 27 17 

r-LoCoH 15.0% (8.4%, 6.6%) 10.3% (5.9%, 4.4%) 8.8% (5.6%, 3.2%) 

r & 2.0 1.0 1.75 

a-LoCoH 8.8% (5.9%, 2.9%) 8.7%$ (4.6%, 4.0%) 8.6% (5.4%, 3.2%) 

a & 21.0 19 19 

GK 95% 27.3% (22.2%, 5.2%) 30.3% (2.9%, 27.4%) 20.2% (14.9%, 5.2%) 

GK 99% 20.9% (10.4%, 10.4%) 56.6% (0.4%, 56.2%) 15.0% (3.9%, 11.1%) 

GK minimum* 20.9% (10.4%, 10.4%) 22.2% (10.9%, 11.5%) 14.6% (6.1%, 8.6%) 

(isopleth)** (99%) (87.5%) (98.25%) 

The best estimate is in bold type.

&optimal values reflect integer resolution for k and 0.25 resolution for r and a; *minimizes total error; $0.1 difference in sum due to rounding; **search resolution is


a quarter of a percent apart.

doi:10.1371/journal.pone.0000207.t001


that is, error rates of around 2–3 times those of the a-LoCoH 
constructions. 

Also note in Table 1 that the Type I and Type II errors 
associated with the three LoCoH methods are relatively similar, 
whereas this is not generally true for the symmetric bivariate 
Gaussian kernel method. In addition, the plots of error levels for 
the LoCoH constructions (Fig. 3) indicate that a-LoCoH construc

tions were less sensitive than the k- and r-LoCoH constructions to 
variation in the proportional changes to the values of the 
parameters around their optimal values. With regard to errors 
associated with estimating the construction of the 20% isopleth, 
the r-LoCoH method breaks down as soon as the value of r 
increase beyond a critical value (e.g. in datasets A and C around 
the radius of the core set of points in the data sets), while the 
k-LoCoH and a-LoCoH methods are more reliable, with the 
former actually performing better for data set B and the latter 
performing better for data sets A and C. 

For each of the three data sets, the errors of the LoCoH models 
are plotted as a function of sample size for the optimal (i.e. error 
minimizing) values of the parameters (Figs. 4A–C). For all values 

and all cases the errors decrease with sample size. For dataset A, 
r-LoCoH moves quickly from performing the best (but well within 
the error bars) for the smallest sample size to performing by far the 
worst for the largest sample size. a-LoCoH is consistently strong 
throughout this dataset. For dataset B, k- and a-LoCoH have 
nearly identical accuracy except for the smallest sample size where 
a-LoCoH obtains a smaller error. r-LoCoH lags behind across all 
sample sizes in this dataset. In dataset C, the three methods 
perform roughly equally (within the error bars) with r-LoCoH 
appearing to be slightly superior, followed by a-LoCoH, and lastly 
by k-LoCoH. 

The optimal value k* increased with sample size for all three ffiffiffiffiffiffiffiffi 
data sets (Table 2) with the heuristic initial guess k1 ~

p
200~14:1 

very close to the optimal value for all three sets of data when 
n = 200 but not as close when n = 1000: in the latter case a rule of ffiffiffiffiffiffiffiffiffiffi ffiffiffi 
k~
p

n=2~
p

1000=2&16 works better than the heuristic rule. As 
expected, the optimal value of r decreased with increasing point 
density. The optimal value of a also decreased, but not strictly 
monotonically (Table 2). The heuristic rule for r produced a value 
r1 that was generally lower than the optimal r* by factor of 1.5 to 3. 

Figure 4. The effect of sample size on the optimal (i.e. error minimizing) value of parameters, k, r and a and total errors associated with the 
construction of the 100% isopleth using the k-LoCoH (solid line), r-LoCoH (dashed line), and a-LoCoH (dotted line) methods respectively for the three 
data sets (A, B, and C). Mean and standard error for fifteen randomly generated datasets for each sample size are plotted. 
doi:10.1371/journal.pone.0000207.g004 
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Table 2. Comparison of our heuristic rules for choosing initial parameter values k1, r1 and a1 and optimal parameter values k*, r* 
and a* for the manufactured data. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


Data (true area) k-LoCoH r-LoCoH a-LoCoH 

k1 k* r1 r* a1 a* 

A: 200 points 14.1 13.5 (0.70) 1.41 (0.18) 2.37 (0.05) 25.5 (0.04) 24.9 (1.00) 

1000 points 31.6 14.5 (0.42) 0.56 (0.00) 1.67 (0.06) 25.7 (0.00) 23.3 (0.84) 

B: 200 points 14.1 11.9 (0.48) 0.74 (0.08) 1.51 (0.04) 18.4 (0.12) 15.5 (0.74) 

1000 points 31.6 20.6 (0.60) 0.57 (0.00) 0.79 (0.00) 19.6 (0.00) 14.0 (0.23) 

C: 200 points 14.1 12.7 (0.42) 1.00 (0.03) 3.10 (0.05) 19.7 (0.03) 24.4 (0.82) 

1000 points 31.6 17.3 (0.27) 0.46 (0.00) 0.79 (0.03) 19.9 (0.00) 20.7 (0.59) 

Mean values are given with standard error in parentheses calculated over 15 different samplings of the data. 
doi:10.1371/journal.pone.0000207.t002 

On the other hand, the heuristic rule for a produced a value a1 that 
was surprisingly close to a*, in some cases being very close, and 
others being too high or low by a factor of only 0.2. 

In Figs. 5–7, the UDs for the half-optimal, optimal, and twice-

optimal parameter values are plotted for data sets A, B and C, 
respectively. These constructions illustrate that the a-LoCoH 
method is the least sensitive to changes in the value of the 
parameter a, r-LoCoH the most sensitive, and k-LoCoH is inter

mediate. Moreover, of the three methods, k-LoCoH is most likely 
to create spurious holes (Type I errors) at half the optimal k value, 
while r-LoCoH is most likely to fill in real holes (Type II errors). 

For the sake of completeness and to permit visual comparisons, 
the fixed kernel least-square cross validation UDs (95th percentile) 
are plotted for data sets A, B, and C in Fig. 1, where we see that for 
all three sets of data, unlike the LoCoH method, the method fails 
to identify any of the holes. 

Buffalo data 
Silverman’s parametric kernel method [14] yielded considerably 
larger area estimates in three of the four cases than the MSHC a-

LoCoH method (Table 3; Fig. 8a, T07: 244 vs. 173; Fig. 8c, T13: 
142 vs. 95; Fig. 8d, T16: 84 vs. 55). Only in one case was the 
situation reversed (Table 3; Fig. 8b, T15: 121 vs. 153): this appears 
to be a function of the distribution of the data into a few high-

density areas with a few oddly shaped sparse regions. Both the 
kernel method and the a-LoCoH method at the 95% isopleth 
exclude a number of these points, but the a-LoCoH method locally 
accommodates the denser areas, which, in this case, includes them. 
The kernel method, applying a constant function, drops all but the 
95% densest areas according to a single metric. 

In the Satara area (Figs. 8a and b) the hashed object embedded 
in the UD is a large animal exclosure. In the Lower Sabie area, 
a ridge area that is too steep for buffalo is shown as a hashed object 
(Figs. 8c and d). Both the MSHC a-LoCoH and parametric kernel 
methods left at least half of the enclosure at Satara uncovered 
when the 95% isopleth was used as a boundary, but impressively 
so did the 100% isopleth boundary of the MSHC a-LoCoH. 
(Figs. 8a–b) (the 100% isopleth of the parametric kernel method 
covers the entire exclosure). The parametric kernel method failed 
to identify the ridge area embedded within the T13 data in Lower 
Sabie by completely covering the ridge, while the MSCH a-

LoCoH 95% isopleth defined the left boundary of the ridge rather 
clearly and even left the ridge partially uncovered in the 100% 
isopleth construction (Figs. 8c and d). The MSHC a-LoCoH also 
covered less of the ridge in both the 95% and 100% isopleth 
constructions than the parametric kernel method did for its 95% 
isopleth construction. 

Note that the symmetric bivariate Gaussian kernel UDs have 
slightly jagged boundaries because they are generated from an 
underlying grid, while LoCoH UDs are generated directly from 
the polygonal elements. 

DISCUSSION 
In statistics, nonparametric methods always require fewer 
assumptions than the corresponding parametric methods. In the 
case of UD constructions, both parametric and LoCoH kernel 
methods require common assumptions about data to avoid 
misinterpretations that come from bias with respect to the way 
the data are collected. By definition, however, parametric kernel 
methods always involve additional assumptions about the form of 
the distributions governing the data that nonparametric methods 
do not make. Thus, although traditional kernel methods can 
produce UDs and HRs that follow highly irregular data, they are 
still based upon parametric kernels that require the investigator to 
specify their functional form. LoCoH kernels, on the other hand, 
take their form directly from the data, thereby relieving the 
investigator of the burden and bias associated with choosing 
a functional form for the kernels. Further, parametric kernel UD 
constructions are almost always based on non-compact (i.e. 
unbounded) symmetric bivariate Gaussian kernels. This implies 
an ad-hoc decision must be made on which isopleth to use in HR 
constructions. Although, typically, the 95th percentile is used a 90th 

percentile boundary may decrease sample size bias [21] and 
handle poor convergence of area estimates with increasing sample 
size better. In the latter case, areas of the true home range are 
invariably omitted. Also, in some cases (as we mention in our 
methods section) the LSCV method for selecting the best value for 
the symmetric bivariate Gaussian smoothing or width parameter h 
does not converge and an ad-hoc method must be used to select its 
value. 

Even bounded parametric kernel methods (e.g. Epanechnichov 
kernels) will always overshoot the data by an amount equal to the 
value of the kernel radius parameter h, no matter how dense the 
data. On the other hand, LoCoH methods do not overshoot the 
data, since they use the data directly; and hence converge on true 
boundaries as the density of data increases [23]. The only errors 
that LoCoH makes are small: it locally approximates the actual 
boundary by fitting a line between the two points closest to the true 
boundary element in question. In essence, our analysis suggests 
that we should move beyond the assumption, implicit in 
parametric kernel methods, that all points are internal and 
recognize that many animals not only visit the boundaries of their 
range, but may even patrol them as a way of warding of 
competitors [30]. 

PLoS ONE | www.plosone.org 7 February 2007 | Issue 2 | e207 



� 

LoCoH 

Figure 5. Illustrations of UDs constructed for data set A using k-LoCoH, r-LoCoH, and a-LoCoH methods with half, actual, and twice the optimal k, r 
and a parameter values. The darkest to lightest areas represent ascending decile areas from the 10th to 100th percentile isopleths. 
doi:10.1371/journal.pone.0000207.g005 

In a previous publication, we demonstrated the superiority of k-

LoCoH over symmetric bivariate Gaussian kernel methods [23], 
whether fixed or adaptive and using Silvermen’s ad-hoc or the 
least-squares-cross-validation algorithm [14,18]) for selecting the 
smoothing parameter, for identifying holes in UDs and estimating 
the areas of HRs. From the results presented here, it is clear that a-

LoCoH is superior to both r-LoCoH and k-LoCoH. A priori it was 
not clear to us whether k or r-LoCoH would be the superior 
method, but with hindsight, r-LoCoH is generally the worst 
performer because it is essentially a non-parametric kernel method 
in which all elements are approximately the same size (determined 
by the value of r). On the other hand, the k-LoCoH method adapts 
the size of the kernel elements resulting in smaller kernels in 
regions with a higher density of locations. The a-LoCoH method 
also has this latter adaptive property; but additionally results in the 
construction of more robust UDs, because it is the method that is 

the most insensitive to suboptimal value choices for its kernel 
parameter (as illustrated in Figs. 5–7). Further, for the datasets 
we analyzed, our heuristic rule for selecting a1 typically provided 
a value that was within 30% of the value a* while our heuristic 
rules for r1 and k1 fluctuated from almost the same to twice as 
large as the corresponding MSHC values in the case of k-

LoCoH, and from 1/3 to 3 times less than corresponding MSHC 
values in the case of r-LoCoH. Thus, researchers should feel 
more confident using a1 than r1 or k1 when a priori information 
on holes is unavailable. Further this confidence in a1 over r1 or k1 

still applies even if we modify our heuristic rules for selecting r1 

and k1 to: 

N r1 is the maximum of all the nearest neighbor distances 
associated with the data 

ffiffiffiN k1 ~2
p

n 3 where n is the number of points in the set. 
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Figure 6. Illustrations of UDs constructed for data set B using k-LoCoH, 
r-LoCoH, and a-LoCoH methods with half, actual, and twice the optimal 
k, r and a parameter values. The darkest to lightest areas represent 
ascending decile areas from the 10th to 100th percentile isopleths. 
doi:10.1371/journal.pone.0000207.g006 

In this modified case, both r1 and k1 would only be with 50% of 
r* and k* respectively. Further, it is not clear that these two rules 
would remain robust as sample size increase, while, from Table 2, 
our heuristic rule for a seems much less affected by changes to 
sample size than is the case for r and k. Thus our overall conclusion 
is that a-LoCoH is the best method unless some compelling reason 

Figure 7. Illustrations of UDs constructed for data set B using k-LoCoH, 
r-LoCoH, and a-LoCoH methods with half, actual, and twice the optimal 
k, r and a parameter values. The darkest to lightest areas represent 
ascending decile areas from the 10th to 100th percentile isopleths. 
doi:10.1371/journal.pone.0000207.g007 

exists to have all the kernels constructed either from the same 
number of points (k-LoCoH) or for all to be of similar size (r-

LoCoH). 
There has been some confusion about the need for points to 

have a certain temporal properties. This issue has recently been 
clarified by Börger et al. [21], and it is becoming clear that 

Figure 8. Comparisons of UD constructions using an a-LoCoH estimators where the value of the parameter is â obtained using the MSHC method 
(see text for details), and a parametric kernel, where the smoothing parameter h is calculated using the ad-hoc method of Silverman (1986). Panels: a. 
collar T07 and b. collar T15, both in the Satara Region; and c. collar T13 and d. collar T16. both in the Lower Sabie Region. Black circles are GPS collar 
locations and the hatched shape is the exclosure in a. and b. and the ridge area in c. and d. The left figure of each panel shows the 100% isopleth in 
light grey and the 95% isopleth in dark grey, using the a-LoCoH method. The right figure of each panel shows the 100% kernel in light grey and the 
95% parametric kernel in dark grey. 
doi:10.1371/journal.pone.0000207.g008 
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Table 3. Comparison of the areas in km2 estimated for the four buffalo GPS collar sets of data (n points) by the 95% and 100% 
isopleths for nonparametric (LoCoH) and parametric kernela methods. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


Collar n  HR  k-LoCoH r-LoCoH a-LoCoH Kernel 

parameter (k1) (r1) (a1) (â) 

T07 27 95% 190 268 166 173 244 

89 100% 289 (53) 321 (3475) 236 (32383) 253 (44850) 

T13 25 95% 96 114 89 95 142 

72 100% 238 (51) 144 (1470) 211 (28156) 224 (35000) 

T15 28 95% 126 146 128 153 121 

46 100% 276 (53) 156 (1555) 205 (35684) 257 (72000) 

T16 16 95% 56 46 55 55 84 

75 100% 118 (41) 49 (678) 90 (23401) 90 (23401) 

For the k, r, and  a-LoCoH methods the parameters used, as described in the text, are the heuristic values k1, r1, and  a1 and the MSHC value â (given in parentheses). 
aImplemented in Animal Movement Extension for ArcView 3.x [29] using Silverman’s ad-hoc method for selecting the smoothing parameter h [14]. 
doi:10.1371/journal.pone.0000207.t003 

important biological information is contained in spatiotemporal 
autocorrelations of data points [6,31,32]. It is important to note, 
however, that an assumption necessary to ensure the construction 
of adequate unbiased UDs is that the data points have been 
collected suitably often to obtain a representative sample of points 
over time to cover all modes of behavior. If this is not the case, 
then we have to be careful how we interpret the resulting UDs. In 
particular, as the sampling intensity decreases, say to twice or four 
times a day, it becomes increasingly likely that sparse, but regular 
sampling may coincide with particular activities (e.g. sleeping, 
drinking, eating) and result in UDs biased towards these activities. 
Moreover, the scale at which the utilization can be interpreted will 
still depend on the frequency of data points, even for extremely 
regularly spaced points. For example, our buffalo data, collected at 
hourly was still too sparse relative to rate of movement of 
individuals with regard to identifying small physical obstacles on 
the landscape, including a small hill that we know is not utilized by 
buffalo in the Kruger National Park. 

As with any numerical method that draws directly upon data, 
LoCoH HR estimates and UD constructions are only as good as 
the data they rely upon to carry out the numerical computations. If 
these data are particularly noisy, then holes will be filled and sharp 
boundaries blurred. Fortunately, the resolution of GPS data is 
sufficient to accurately assess the location of sharp boundaries to 
within a couple of meters when information is collected at 
appropriately high frequencies (i.e. as they relate to the rate at 
which individuals move along the boundaries of their range). 
Assuming high quality data, the great advantage of LoCoH over 
parametric kernel methods is that LoCoH estimates convergence 
to true values with increasing sample size. This allows one to study 
the convergence properties by comparing estimates using a tenth, 
quarter, half, and all the data. If half the data, for example gives an 
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