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Abstract Recent technological advances, such as proximity
loggers, allow researchers to collect complete interaction his-
tories, day and night, among sampled individuals over several
months to years. Social network analyses are an obvious
approach to analyzing interaction data because of their flexi-
bility for fitting many different social structures as well as the
ability to assess both direct contacts and indirect associations
via intermediaries. For many network properties, however, it

is not clear whether estimates based upon a sample of the
network are reflective of the entire network. In wildlife appli-
cations, networks may be poorly sampled and boundary
effects will be common. We present an alternative approach
that utilizes a hierarchical modeling framework to assess the
individual, dyadic, and environmental factors contributing to
variation in the interaction rates and allows us to estimate the
underlying process variation in each. In a disease control
context, this approach will allow managers to focus efforts
on those types of individuals and environments that contribute
the most toward super-spreading events. We account for the
sampling distribution of proximity loggers and the non-
independence of contacts among groups by only using contact
data within a group during days when the group membership
of proximity loggers was known. This allows us to separate
the two mechanisms responsible for a pair not contacting one
another: they were not in the same group or they were in the
same group but did not come within the specified contact
distance. We illustrate our approach with an example dataset
of female elk from northwestern Wyoming and conclude with
a number of important future research directions.
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Introduction

Quantifying interactions among individuals is central to
several fields of ecology, such as animal behavior and
infectious disease dynamics. Many early studies of animal
contact rates directly observed individuals (e.g., Goodall
1963). The development of very high-frequency (VHF)
radiotracking, global positioning system (GPS) devices,
and mark–recapture techniques extended the ability of ecol-
ogists to study animal contacts in species where individuals

Communicated by M. Festa-Bianchet

Paul C. Cross and Tyler G. Creech contributed equally.

Electronic supplementary material The online version of this article
(doi:10.1007/s00265-012-1376-6) contains supplementary material,
which is available to authorized users.

P. C. Cross (*) :K. M. Irvine
U.S. Geological Survey,
Northern Rocky Mountain Science Center,
2327 University Way, Suite 2,
Bozeman, MT 59715, USA
e-mail: pcross@usgs.gov

T. G. Creech
Department of Ecology, Montana State University,
310 Lewis Hall,
Bozeman, MT 59717, USA

M. R. Ebinger : S. Creel
Department of Ecology, Montana State University,
302 Lewis Hall,
Bozeman, MT 59717, USA

D. M. Heisey
U.S. Geological Survey, National Wildlife Health Center,
6006 Schroeder Road,
Madison, WI 53711, USA

Present Address:
T. G. Creech
Department of Fisheries and Wildlife, Oregon State University,
104 Nash Hall,
Corvallis, OR 97331, USA

Behav Ecol Sociobiol (2012) 66:1437–1447
DOI 10.1007/s00265-012-1376-6

http://dx.doi.org/10.1007/s00265-012-1376-6


are hard to identify or are difficult to directly observe
(Electronic supplementary material (ESM) 1). In cases
where rare and brief encounters play an important role
(e.g., disease transmission), these traditional approaches
may be biased because either individuals cannot be ob-
served simultaneously day and night or the spatiotemporal
resolution of the data is too coarse. In addition, interaction
data are problematic to analyze with traditional statistical
approaches because they are non-independent (i.e., pairwise
and often clustered within groups) and non-normally dis-
tributed (Kenny et al. 2006; Whitehead 2008; Croft et al.
2011). Recent technological advances, such as proximity
loggers that record when individuals are within a specified
distance, open many new opportunities for ecologists, epi-
demiologists, social and behavioral scientists, but statistical
approaches that realize the full utility of these advances still
need development.

Proximity loggers use ultra-high-frequency transceivers
to continuously record when sampled individuals are within
a user-specific distance (currently adjustable from 0.5 to
100 m). Disease ecologists and epidemiologists often refer
to “contacts” as interactions among individuals where path-
ogen transmission may occur even without physical contact.
We refer to interactions and contacts interchangeably, but
note that contacts do not necessarily imply physical touch.
At present, two vendors make proximity loggers: Sirtrack
Ltd. (now owned by Lotek Wireless Inc.) and Vectronic
Aerospace GmbH. Proximity loggers have been used to
study intraspecific contact rates of brushtail possums (Ji et
al. 2005), European wild rabbits (Marsh et al. 2010),
Tasmanian devils (Hamede et al. 2009), raccoons (Prange
et al. 2006, 2011), elk (Creech et al. 2012; Vander Wal et al.
2012a, b), and white-tailed deer (Walrath et al. 2011) and
interspecific contact rates between European badgers and
cattle (Böhm et al. 2010). One particularly promising appli-
cation of proximity loggers is explaining the differences in
contact rate among individuals and habitats. Variation in the
interaction rates among categories of individuals based on
characteristics such as age, sex, or social rank is a well-
studied phenomenon (e.g., Pereira 1988; Creel et al. 1992;
Bradley et al. 2004; Wolf et al. 2007). The amount of
variation that is attributable to particular individuals within
these categories, however, remains poorly understood and is
rarely estimated despite being a common feature of human
and animal populations (Bansal et al. 2007; Clay et al. 2009;
Marsh et al. 2010). Here, we discriminate between process
and sampling variation, where process variation is the pre-
dictable differences among individuals, pairs, or environ-
ments rather than unpredictable stochastic events that lead
an individual to be highly connected at one point in time.

In the context of disease dynamics, Woolhouse et al.
(1997) proposed a “20/80 rule” as a general feature of
animal populations, whereby 20 % of individuals are

responsible for 80 % of disease transmission in a population.
Lloyd-Smith et al. (2005) related this pattern of transmission
to super-spreading events, which are uncommon but impor-
tant situations in which a small number of individuals have
large effects on transmission. Super-spreading events are
due to individual variation in infectiousness and suscepti-
bility, and variation in contact rates that is driven by indi-
vidual and environmental factors. Proximity logger data can
be used to identify those factors driving variation in the
interaction rate, and because the loggers repeatedly sample
individuals and pairs, we can estimate the process variation.

We propose a hierarchical modeling framework for ana-
lyzing contact data that estimates the individual, dyadic, and
environmental factors contributing to variation in contact
rates and controls for the sampling distribution and group
structure of many social species. Our approach differs from
the more common social network analyses (SNA) that are
applied to interaction data (e.g., Carrington et al. 2005;
Wasserman and Faust 1994; Krause et al. 2007; Wey et al.
2008), so we first review some of the issues and challenges
associated with applying SNA to wildlife datasets. In many
systems where only a percentage of the population can be
sampled, we believe that hierarchical models can answer a
number of important ecological questions that would be
problematic for SNA. We illustrate this approach using
proximity logger data on 150 female elk from northwestern
Wyoming as an example. Several important issues remain
that require further development, so we conclude with a
discussion of future statistical and ecological research
directions.

Social network analyses

Recent studies have used SNA to explore a variety of topics
in epidemiology and animal behavior (ESM 1; Krause et al.
2007). Social networks represent individuals as nodes and
the connections between them as edges, and there are nu-
merous metrics to describe the properties and topology of
the network. Wey et al. (2008) describe three levels of
organization for network metrics: individual-level metrics
describing the properties of a focal node (e.g., node degree),
intermediate-level metrics describing the subgroup structure
within a network (e.g., clustering coefficient, cliquishness),
and group-level metrics describing the properties of the
entire network (e.g., density, diameter). It is also useful to
distinguish between metrics that are influenced only by
direct connections between nodes (e.g., node degree) and
metrics that also account for indirect connections between
nodes separated by more than one edge (e.g., average path
length). SNA has, at least, two main benefits over traditional
approaches. First, networks, and the various metrics describ-
ing those networks, account for both direct and indirect
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connections among individuals. Second, the flexibility of
networks can accommodate any social structure, whereas
alternative frameworks often require researchers to make,
sometimes arbitrary, decisions to fit their species into that
framework. For example, what constitutes a group and the
membership of that group may be unclear. Social network
analyses, however, also involve a number of statistical and
sampling challenges, which we outline below.

Sampling networks

Quantifying animal contact rates usually requires sampling a
subset of individuals from the population of interest. Methods
that require capturing and outfitting individuals with recording
devices (proximity loggers, GPS, or VHF telemetry) typically
limit researchers to sampling a small fraction of the total
population of interest because of the costs associated with
purchasing and deploying these devices. Direct observation
methods often allow a much greater fraction of the population
to be sampled over the course of a study, but may be limited to
just those individuals that are uniquely identifiable, which
may not always be a representative sample of the population.
Low temporal resolution generally results in the omission of
edges, while incomplete sampling of individuals results in the
omission of nodes and the edges that would have been asso-
ciated with them (Fig. 1). The implications of a proportion of
the population sampled (hereafter referred to as “sampling
intensity”) are rarely discussed explicitly in animal contact
studies, but may be critical when inferences about the full
contact network are desired.

Effects of incomplete data on network properties have
received considerable attention in the human social sciences
literature (Marschall 2007). The most common approach has
been to randomly remove nodes or edges from simulated
networks (e.g., random, scale-free, small world) and observe
the resulting changes in network metrics. Some metrics will
be biased in a predictable direction by random sampling of a
network. For instance, the mean node degree will be equal or
lower in a randomly sampled network than a full network
because a portion of each node’s neighbors are omitted from
the sampled network (Stumpf et al. 2005). Indirect metrics
may be especially vulnerable to sampling effects because the
omission of any one node or edge potentially affects many
distant nodes. Failing to include even a single node, for
instance, may dramatically increase the diameter of the ob-
served network if the omitted node provided an important link
between otherwise distantly connected nodes (Marschall
2007). Finally, some indirect metrics are not calculable for
networks consisting of unconnected components (e.g.,
average path length).

Borgatti et al. (2006) found predictable declines in the
accuracy of centrality measures due to random sampling of
networks. Frantz et al. (2009) found large differences be-
tween five model networks in the robustness of centrality
metrics to sampling and concluded that network topology
has a greater effect on metric accuracy than other network
properties such as size or density. Both of these studies
simulated error rates (i.e., percentages of omitted nodes
and edges) of up to 50 %. Field studies of wildlife popula-
tions will often fail to obtain sampling intensities as good as
these studies’ worst-case scenarios. Studies of how

Fig. 1 Schematic of the who-contacts-whom matrix (a) of contact data
for a given period of time used in the statistical modeling of contact
rate within a group. The network representation (b) of the contact data
illustrates the differences between the sampled and unsampled edges

(lines) and nodes (circles). Numbers within the circles correspond to
the rows and columns of the matrix. Bold numbers are the high counts
of the number of contacts for a given pair used in the statistical analysis
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incomplete data affect the estimation of network properties
are relatively rare for empirically based networks (but see
Costenbader and Valente 2008; Wey et al. 2008). The effects
of incomplete data are even more poorly understood for
wild animal social networks than for human social net-
works, for two reasons. First, sampling intensity is some-
times not known in wildlife studies because precise
estimates of population size are difficult to obtain. Second,
studies of incomplete data have typically removed data at
random. Removing a percentage of interactions will often
have a lesser effect on binary network metrics than the
removal of nodes or individuals, which is more equivalent
to sampling only a proportion of the population. Further-
more, highly influential nodes may be rare and unlikely to
be sampled in the first place. Thus, even if the sampled
network appears robust to subsampling nodes, we still have
only limited confidence that the same is true for the entire
network. Finally, Lee et al. (2006) found that subsampling a
dataset has different effects on network metrics such as
average path length and clustering coefficient when sam-
pling occurs via random selection of nodes versus random
selection of edges.

Static versus dynamic networks

Proximity loggers provide detailed temporal data over sev-
eral months to years depending on battery life and available
memory. However, a common method for analyzing social
networks is to collapse data over relatively long time periods
in order to capture connections that would go undetected
over shorter time periods due to sampling limitations (e.g.,
Lusseau and Newman 2004). Static networks generated in
this manner rely on the assumption that network structure is
constant through time or that temporal variation would not
affect inferences about the question of interest, but as Wey et
al. (2008) note, “not all of the relationships represented may
have existed at the same time, nor indeed may have all the
individuals been together simultaneously.”

While static networks may be appropriate for answering
questions about long-term patterns of association (Lusseau
et al. 2006), they can be problematic for answering ques-
tions about information transfer or disease transmission
where the timing of contacts matters (Bansal et al. 2010).
Static networks can be particularly problematic when con-
tact data are collapsed over a time interval that is longer than
the average duration of infectiousness. In such instances, the
network structure will suggest a greater number of potential
contacts between an infected node and its neighboring nodes
than is actually possible during the infectious period (Cross
et al. 2004). Several recent simulation studies have con-
firmed that when the true network structure is changing
(i.e., dynamic), using a static network approach can misrep-
resent patterns of transmission and epidemic thresholds

(Fefferman and Ng 2007; Volz and Meyers 2007, 2009).
In systems where pathogens alter the contact behavior of
infected hosts (Bouwman and Hawley 2010), static net-
works may be unable to identify pathogen-mediated shifts
in network structure. Static networks can also be misleading
in analyses of social behavior; for instance, data on agonistic
interactions are sometimes aggregated into a matrix to pro-
duce a dominance hierarchy that includes some dyads that
were never present at the same time, and many long-term
studies include individuals that left the study early or en-
tered the study late.

Statistical analysis of networks

The complex dependencies inherent in many contact and
network datasets are not easily addressed by traditional
statistical approaches. As a result, some ecological network
analyses have been conducted using randomization tests
(e.g., Mantel and partial Mantel tests; ESM 1; Whitehead
2008; Croft et al. 2011) that compare the properties of the
observed network to a random null model of association
between nodes. Often, Mantel tests are used to determine
whether network structure is correlated with some other
characteristic of dyads, such as their genetic relatedness or
difference in age. We find many of these analyses unsatisfy-
ing because showing that individuals are not random is not
as interesting as estimating the strength of the biological
factors that drive the observed non-randomness. In addition,
it is often unclear what the null random model should be
(Cross et al. 2005; Whitehead 2008).

Other ecological network analyses involve first calculating
a network metric and then statistically assessing the relation-
ship between that metric and other data (e.g., degree centrality
as a predictor of infection; ESM 1). This approach tends to
ignore the estimation uncertainty associated with the network
metrics as well as the bias associated with subsampling the
network. Recently, exponential random graph models
(ERGMs) have been developed to analyze network data
(Snijders et al. 2006; Robins et al. 2007). Practitioners of this
approach assume that the network data are one realization of a
stochastic process and therefore estimate the probability of a
contact (or edge) between individuals/nodes as a function of
network parameters. However, because an edge is included in
both the dependent and independent variables of the equation,
an appropriate statistical estimation of ERGMs is more com-
plicated than traditional generalized linear models. ERGMs
have typically been used for static network analyses, but
Snijders (2005) and others have begun to extend these
approaches to dynamic networks. ERGM approaches are usu-
ally applied to networks with complete data, and many net-
work estimates using ERGMS are highly biased by
incomplete data (Huisman 2009). Consequently, we believe
that the strength of proximity loggers lies outside of the
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network paradigm. Here, we propose an alternative approach
for analyzing contact data like those provided by proximity
loggers that may be applicable to many field settings where
the network is relatively weakly sampled.

Statistical analysis of contact rate

Our approach assesses the individual, dyadic, and environ-
mental factors contributing to variation in contact rates
among individuals while avoiding many of the problems
associated with sampling networks by asking a different
question than many network analyses—“What factors are
associated with contact rate or the probability of contact
between individuals A and B, given that they are located
within the same group?” By focusing our analysis on
within-group associations, we remove higher-order network
dependencies that are not easily modeled with traditional
statistical approaches. We focus here on characterizing the
interaction rates within a group, but a full understanding of
contact structure will require information on how individu-
als move among groups and how groups themselves inter-
act. Defining what constitutes a group is sometimes not
trivial, particularly when group membership changes fre-
quently. We assume that group membership can be defined
within some small time interval (e.g., hours to days).

Our approach utilizes generalized linear mixed models
(GLMMs), which are increasingly applied to ecological data-
sets (Bolker et al. 2009). The so-called random effects in
GLMM models are often used in the analysis of ecological
data to account for the non-independence of multiple samples
taken from the same individual (“repeated measures”) or site
(“subsampling”; Breslow and Clayton 1993; Gillies et al.
2006) and are often viewed as a statistical nuisance. In the
analysis of interactions, however, individual and dyadic
effects are of central interest, as is the variance among indi-
viduals and dyads. In cases where individuals, dyads, or
periods are weakly sampled and data are unbalanced, the
random-effects predictions are the best linear unbiased pre-
dictions with lower mean square errors than fixed effect
estimates (Robinson 1991). Similar types of models have also
been used in the psychology literature to analyze small groups
and family dynamics (Kenny 1996; Kenny et al. 2002).

In many cases, it will be misleading to assess variation
among individuals in contact rate by comparing the total
numbers of contacts recorded by proximity loggers for each
sampled individual because many populations are spatially
structured such that some sampled individuals spend more
time in the vicinity of other sampled individuals than others
(and thus have greater opportunity for contacts to be
recorded, regardless of true contact rate). To account for
this, information on the spatial distribution of the sampled
individuals is needed, particularly in systems where the

group structure changes frequently. In our approach, zeros
associated with no contacts between individuals of different
groups are excluded. In addition, we insert zeros into the
dataset whenever two marked individuals are known to be in
the same group, but do not make contact (Fig. 1). These are
important departures from an ERGM or SNA approach
where these non-contacts are informative about the higher-
order structure of who is in a group and how groups contact
one another. Our focus, however, was on the contact rates
within a group. Controlling for the distribution of sampled
individuals could be done by direct observation, VHF, or
GPS tracking. In our example, we use directly observed
group membership information.

Proximity logger data include both the number of con-
tacts and the duration of each contact. For some purposes
like disease transmission, the total duration of contact dur-
ing a time period may be more useful than either the number
of contacts or the average duration of those contacts. The
total duration of contact, however, is likely to be relatively
complicated to statistically analyze because the distribution
will be bimodal with peaks at zero for those dyads that did not
contact one another and again at some average duration of
contact, which will probably require zero-inflated (Lambert
1992; Hall 2000) or hurdle (Mullahy 1986; Gurmu 1998)
modeling approaches. We focus on the number of contacts,
but our approach is easily modified to instead investigate
contact durations.

Let ylk represent the number of contacts between dyad
l for group observation k, where dyad l is the unique dyad
for individuals i and j. Observation k may also be associated
with group-level information about the location, time, hab-
itat, and group size. Potential dyads that were never ob-
served in the same group were excluded from the analysis.
For each dyad, contacts are recorded twice, once on each
logger in the pair. When loggers differ, we used the collars’
data with the maximum number of contacts recorded for the
pair (Fig. 1). We considered Poisson, overdispersed Poisson,
and negative binomial data models, and in our example, the
variance of the residuals from our best model had a roughly
quadratic relationship with the mean (ESM 2), suggesting
that a negative binomial formulation would be most appro-
priate (Ver Hoef and Boveng 2007). We used the Poisson–
Gamma mixture model formulation of the negative binomial
model such that

ylk � Poisson rlkllkð Þ

llk ¼ exp b0 þ ai þ aj þ dl þ ρk
� �

rlk � Gamma θ; θð Þ;

Behav Ecol Sociobiol (2012) 66:1437–1447 1441



ai � Normal 0;σ2
a

� �
; aj � Normal 0;σ2

a

� �

dl � Normal 0;σ2
d

� �
; ρk � Normal 0;σ2

ρ

� �

where β0 is the global intercept, αi and αj are individual
effects (“sociability”), δl are dyad effects (an interaction of
individual i and j), and ρk are environmental effects (ESM 3).
A gamma distribution with the same shape and scale param-
eter, θ, has a mean of 1 and thus only affects the variation in
the predictedcylk. Each observation period k represents a single
observation of a group, and contacts are then summed for the
12 h before and after this observation. We refer to ρk as the
environmental component of the variation in contact rate be-
cause it includes the predictable variation due to habitat, sea-
son, group composition, size, and density. In our example,
multiple elk groups may be observed on a given day, resulting
in multiple ρ estimates—one for each observed group. Elk
groupmembership is relatively fluid; therefore, we do not often
have multiple observations of exactly the same group over
time. The width of time interval over which to sum contacts
has important ramifications. Our choice of a 24-h period was
primarily motivated by the frequent switching of individuals
among groups, which would result in higher misclassification
of group membership over longer time intervals.

This model allows for an individual effect (αi) to capture
the relative sociality of individuals as well as a dyadic inter-
action term (δl) that represents whether or not pairs of indi-
viduals interact more or less often than expected given the
relative sociality of the individuals in the pair. One can build
additional hierarchical levels into this model by incorporating
variables that help predict theαi, δl, or ρk effects. For example,
to assess whether individuals of the same sex were more likely
to make contact, we could assume that dl � Normal wzl;σ2

d

� �
,

where zl is an indicator variable representing whether the pair
was of the same sex or not. A model of particular importance

to disease ecologists would assume ρk � Normal ggk ;σ2
ρ

� �
,

where g is the standardized group size for observation k and γ
indicates how the number of contacts between a pair of
sampled individuals changes with group size. In this example,
we are particularly interested in the estimates and relative
magnitude of the variancesσ2

a,σ
2
d, andσ

2
k and the comparative

fits of the models with or without individual, dyad, and
environmental effects (Gelman 2005).

The above model shares a basic similarity with the diallel
cross model of plant geneticists, whereby researchers are
interested in the breeding value of two parents and each
offspring is a data point (Kempthorne 1956). If contacts are
asymmetric such that there is an obvious receiver and donor,
then it is relatively straightforward to include these effects in
a traditional regression (Whitehead 2008). When contacts

are symmetric, without a biological interpretation of a re-
ceiver or donor effect, as they are for proximity logger data,
then there is no obvious way to run the above model in the
lme4 package of R (Bates et al. 2011) because there are two
individual covariates (αi and αi) for each contact that are
realizations of the same distribution of individuals effects.
With effort, it can be analyzed with SAS PROC GLIM-
MIX® (SAS Institute Inc. 2008), but not very conveniently
for even moderate-sized datasets. It is tempting to include
each recorded contact twice in the dataset, once for each
collar in which it was recorded and then include only one
individual effect αi for the recording collar or individual.
However, this approach would bias the precision of the
estimates of the other covariates due to pseudoreplicating
each contact event (Hurlbert 1984). To circumvent these
issues, we model these data using a Bayesian approach in
WinBUGS (Lunn et al. 2000) where we can account for the
two individuals involved in each contact (ESM 3). If one is
willing to drop the individual effects and allow the dyadic
effects to account for both the main effect of the individuals
as well as their interaction, then simpler models could be run
in most statistical packages. At present, however, a negative
binomial mixed effect model is not supported within lme4
(Bates et al. 2011).

We used uninformative prior distributions on all parameters
where possible.We assumed a diffuse normal prior for β0 with
a mean of 0 and a precision of 0.0001. We assigned the
random effects αij, γi, and ρk normal prior distributions with
a mean of 0 and a standard deviation with a hyperprior of
Uniform(0, 3). We also ran several models with Uniform(0,
20) prior distributions for the standard deviations; the results
were very similar. The prior distribution for θ was Uniform(0,
100). We also tested a prior distribution for exp(θ) as normal
with a mean of 0 and a precision of 0.0001, and our posterior
mean θ was nearly identical. We used the R2WinBUGS
package to call WinBUGS version 1.4.3 (Lunn et al. 2000)
from R version 2.13.2 (R Development Core Team 2011). All
models were run for 20,000 iterations on four different Mar-
kov chains and the first half of each chain was discarded
(Table 1). We assessed convergence using the Gelman–

Rubin–Brooks statistic, where bR1:1 for all parameters, which
indicated that relatively little variation was associated with a
specific MCMC chain (Gelman and Hill 2007).

We demonstrate our approach using a proximity logger
dataset from elk (Cervus canadensis) in western Wyoming.
This dataset will be analyzed more extensively elsewhere;
here, we use it primarily to illustrate the general approach
and thus will describe the dataset only briefly. We monitored
roughly 60 elk per year from March 2009 to July 2011
across five different sites, placing approximately 30 collars
in two regions each year. At each site, the proportion of
individuals sampled is probably <5 % of the total number
elk. We outfitted female elk with proximity loggers during
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captures (January throughMarch), and they were programmed
to drop off the elk in July. We calibrated each collar individu-
ally so that interactions were recorded at a distance of 3–4 m
off the animal, which equated to roughly 2 m when the loggers
were then tested on horses (Creech et al. 2012). The amount of
separation time required between interactions before they were
considered separate events was 90 s.

When we observed elk groups containing two or more
proximity-collared individuals, we recorded the time, iden-
tity of collared individuals, and group size for each obser-
vation. In four of the regions, the elk were supplementally
fed from December to March or April (Cross et al. 2007). In
these regions, we used contact data from January to March
when all the elk with loggers were known to be using the
feed grounds. During the feeding season, all the sampled
individuals were defined as being in the same group because
most sampled individuals on the feed grounds contacted one
another within a day. While not on the feed grounds, we
delineated elk groups based upon relatively consistent inter-
nal spacing and individuals moving in roughly the same
direction. The resulting dataset included 247 observations

of groups (103 of those were while elk were being supple-
mentally fed), which included 150 different individuals and
1,571 out of 11,175 possible dyads.

Results and discussion

As is typical for patterns of contact in most species, a small
proportion of elk had very high contact rates. Thus, our
contact data were highly right-skewed, but the negative
binomial model provided a relatively good correspondence
between the empirical data and the modeled predictions
(Fig. 2). We fit models with and without different combina-
tions of individual, dyad, and environmental effects; how-
ever, models without dyad, individual, or environmental
effects tended to have higher DIC scores than the model
that included all three (Table 1). This suggests that all effects
were important enough to warrant the increased model
complexity. The hyperparameter variance estimates, here
shown as standard deviations, indicate that individual and

Table 1 Statistical model comparison and means of the posterior distributions of the individual, dyad, and environmental standard deviations using
the elk proximity logger data. Numbers in parentheses are 95 % credible intervals

No. Model Deviance DIC pDa σα
b σδ σρ

1 β0+αi+αj+δl+ρk 109,903 128,610 18,705 0.28 (0.24, 0.33) 0.28 (0.26, 0.31) 0.55 (0.48, 0.63)

2 β0+αi+αj+ρk 109,736 128,615 18,879 0.28 (0.24, 0.32) – 0.55 (0.48 0.64)

3 β0+δl+ρk 109,887 128,658 18,769 0.43 (0.41, 0.46) 0.57 (0.49, 0.66)

4 β0+αi+αj+δl 109,467 128,760 19,292 0.31 (0.26, 0.36) 0.27 (0.25, 0.29) –

DIC deviance information criterion
a pD0Dbar−Dhat (an approximation of the model complexity)
b Estimates of the standard deviation among individuals (α), dyads (δ), and environments (ρ)

Fig. 2 The observed frequency
distribution of the number of
elk to elk contacts within a
group in 24 h (a). The expected
number of contacts (b) derived
from the top-ranked model
(lowest DIC score, Table 1) and
the residuals (c)
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dyad effects were roughly half as variable as the environ-
mental effects (Fig. 3 and Table 1). Each pair of adult female
elk, on average, made contacts with one another about twice
per day if they were in the same group (exp(0.75)02.1;
Fig. 4). A pair in which one elk had an individual effect
(αi) 1 standard deviation higher than average would be
expected to interact 2.8 times per day (exp(0.75+0.28)0
2.8; Table 1), while an observation period effect (ρk) 1
standard deviation higher than average would equate to 3.7
interactions per day for all those pairs present (exp(0.75+
0.55)03.7; Table 1). Therefore, in this study, super-spreading
events are likely to be driven more by the environmental
context than any particular individual or dyad. This may be
a beneficial insight for managers because identifying and
managing environments where many contacts occur may be
logistically easier than identifying super-spreader individuals
just prior to an epidemic. An important next step to these

analyses will be to identify which covariates help predict the
variability in the observation periods (e.g., habitat, season,
group size). Low variation among dyads indicates that any
effects of friends and enemies appear to be weak or, put
another way, an individual’s contacts do not appear to be
highly concentrated among only a few other individuals.

Elk are a migratory species inhabiting different winter
and summer ranges. Although we outfitted elk on winter
range where groups are larger, we recorded contacts and
observed groups as they migrated to their summer ranges,
and the spatial distribution of loggers generally transitioned
from few large groups each containing many collared indi-
viduals to many small groups each containing fewer col-
lared individuals. As a result, the contact rates may appear to
decline even though the contact rate per pair within a group
is constant. For example, the total number of contacts at a
site per day divided by the number of possible dyads at the
site showed strong temporal trends (Fig. 4a). However, it is
unclear whether this trend is due to changes in how dyads
contact one another within a group or the spatial distribution
of loggers. In our analyses, we control for the distribution of
collars by limiting the data to include only those days and
groups where group membership is known. We then
inserted zeros for pairs without contacts that were known
to be present in the group and exclude those pairs that were
not present in the same group. The resulting temporal trend
in within-group contact rate disappears, although the contact
rate appears to become more variable over time (Fig. 4b and
ESM 4). This indicates that the temporal trend in Fig. 4a is
largely driven by the spatial distribution of loggers, whereby
marked individuals are splitting up and not all loggers are
present within the same group.

Fig. 3 Standard deviations of the individual, period, and environment
random effects from the multilevel models 1–4 (Table 1). Point esti-
mates (standard deviation scale) are the medians of the posterior dis-
tributions with 95 % (wide) and 68 % (narrow) intervals

Fig. 4 Total number of
contacts among all possible
pairs of individuals at a site per
day divided by the number of
possible pairs at that site (a) and
the total number of contacts
within a group divided by the
number of marked pairs in that
group (b). The data in (b) is a
subset of (a) because it includes
only those days and groups for
which group membership is
known. Shading indicates the
time period when elk were
supplementally fed at this site
(Muddy Creek 2010)
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There are several important caveats associated with prox-
imity logger data, and these transfer to our analysis as well.
First, variability exists among the loggers in their ability to
send and receive contact signals. This has important ramifi-
cations for the interpretation of the individual and dyadic
effects, whereby a portion of that variability is due to logger
performance differences as opposed to biological variation.
Future analyses should work to use data collected on logger
performance before and after the study to predict the varia-
tion in individual and dyad effects so that the residual
variation in these estimates reflects biological variation
among individuals and pairs of individuals. A second chal-
lenge to applying this approach is that proximity logger data
are likely to be unbalanced (i.e., not all dyads are observed
in all periods), and in many datasets, there will be relatively
few dyads present in a group and some dyads will only
rarely be observed together. In our case, although the medi-
an number of observations per dyad was 25, we had 84
dyads observed only one time. The less data available for a
particular dyad, the more strongly that dyad’s estimated
effect is pulled toward the overall mean (Gelman and Hill
2007). As a result, one should be cautious of making infer-
ences about particular dyads, individuals, or periods, espe-
cially when they are poorly sampled. However, there may be
biological mechanisms driving the low number of observa-
tions for some dyads or environments; therefore, restricting
analyses to just those cases that are well sampled may also
induce bias. In simulated datasets, we found that the esti-
mates of the population-level variability among individuals,

dyads, and environments (σ2
a , σ

2
d , and σ2

k ) were relatively
good as long as a large number of individuals, dyads, and
periods were available (data not shown).

A final caveat is that our modeling approach assumes
dyads are independent of one another within a group, al-
though group observations may differ in their average con-
tact rate. In other words, if individuals A and B contact
often, and so do B and C, we assume that this does not
imply a high contact rate between A and C. This assumption
is unlikely to hold in cases where the spatial distribution of
individuals is an important determinant of interaction within
a group. For example, seals on a beach may be more
spatially constrained to interact with their neighbors in the
group compared to elk that can move relatively quickly
from one side of the group to another. Exponential random
graph models would be one approach that could account for
these higher-order interactions, but then other issues arise
about the application of ERGMs to sampled and dynamic
networks. For adult female elk, we believe that much of the
correlation among dyads is primarily attributable to group
membership and that there is minimal hierarchical structure
within a group. This should be more rigorously tested and
may not be true in other cases.

Technological advances such as proximity loggers allow
researchers to collect animal contact data with much greater
resolution and efficiency than in the past, providing new
opportunities but also ushering in new theoretical and sta-
tistical challenges. We have provided a potential method for
analyzing interaction data in a multiple random-effects mod-
eling framework that avoids many of the difficulties associ-
ated with networks, particularly sparsely sampled networks
that are common in studies of animal contact rates. Despite
several outstanding statistical issues, we hope that our ap-
proach is a useful stepping stone for future advances that
will allow researchers to understand the factors affecting
variation in contact rate, which is likely to create many
new insights in multiple fields.
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